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ABSTRACT

The Matrix Pencil Approach [1] was shown to be an effective and
efficient method for estimating the angles of arrival of multiple narrow-
band sources. It is classified as a non search procedure. Therefore, it is
computationally less complicated and eliminates problems encountered in
search procedures with regard to memory storage and system calibration.
Having collected the data from the outputs of a linear uniformly spaced ar-
ray consisting of m sensors, the objective is to estimate the .ocations of
the d sources (d<m). The information about the parameters of interest are
contained in the rank reducing values of a matrix pencil generated from the
set of data.

Several extensions of the Matrix Pencil Approach appear in this
work. in the earlier work [1], a data window of length L= m-d was
used to form (d+l1) vectors. Because this choice results in a minimum number
of vectors to span the array, it fails to take into consideration the pos-
sible separation of the signal and noise subspaces. Thus, performance is
drastically degraded at low values of signal to noise ratio (SNR). In this
work it is shown that improved performance can be achieved using a
data windov of length L=d. Becéuse this results in (m-d+1) vectors, which
is the maximum number of vectors to span the array, identification of the
noise subspace is possible. Previous developments of high resolution algo-
rithms neglected the effects of mutual coupling which occurs between the
elements of an array. We show that failure to account for mutual coupling
results in poor performance. Concentrating our efforts on the non search
procedures of ESPRIT and the Mcving Window, we have successfully improved
the performance of these methods by compensating for the mutual coupling.

The problem _f widehand signals is much more diffiecult and has tcen studicd




by only a few investigators. Three methods dealing with the wideband case
are proposed in this work. » In the first method the wideband signals
are modeled as sums of decaying exponentials. This model is suitable for
non stationary signals. The natural frequencies of the sources are assumed
to be unknown at the receiver. Therefore, the estimation procedure consists
of estimating both natural frequencies and angles of arrival of the sources
by means of tvo matrix pencils. However, an ambiguity problem arises as to
which natural frequencies are to be associated with which angles of ar-
rival. Ve show that a third matrix pencil removes this ambiguity. A second
method is proposed where the wideband sources are assumed to be linear sys-
tems driven by white noise. This model is appropriate for stationary sig-
nals. The same array configuration as in the first case is used. The analy-
sis is carried out on the unit circle using the Discrete Fourier Transform.
The third approach makes use of the coherent signal subspace method (CSS)
proposed by Wang and Kaveh [56] in conjunction with the moving window oper-
ator. Again the method performs relatively well when compared to ESPRIT.
Finally, we have studied the effects of perturbation due to noise and due
to sensor spacing. Ve have derived upper bounds for the Chordal Metric
vhich is a measure between the true eigenvalue and the perturbed one. The
chordal metric is shown to be a functional of the true and the perturbed
angles of arrival.

Computer simulations are carried out for each of the analyses as-
sociated with respect to data window length, mutual Eoupling compensation,

the three wideband methods, and the upper bounds in the chordal metric.
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CHAPTER 1

INTRODUCTION

1.1 RESEARCH . OBJECTIVES

In this-WorK» the problem of passive high resolution direc-
tion iinding of multiple sources using a sensor array is addrecrsed. This
problem arises is such systems as radar, sonar, seismology, geophysics,
etc. A direction finding system is referred to as passive when the signals
received at the array are generated externally to the array. These signals
can be either narrowband or broadband. In both cases, given measurements
collected at the array output, the objective is to determine the number of
targets (Detection) and estimate their parameters such as angles of ar-
rival, natural frequencies, etc., (Estimation). A signal is classified as
narrovband wvhen the bandwidth of the impinging signals from the sources is
much less than the reciprocal of the propagation time of the wavefronts
across the array. When this condition does not hold, the signals are said
to be wideband.

The problem of narrowband sources has been studied : tensively.
Solutions range from the classical ones such as the periodogram, the cor-
relogram, etc. to subspace approaches such as MUSIC, ESPRIT, Matrix Pencil,
etc. This work deals with the Matrix Pencil Approach [1]. For the sake of
clarity, assume that d narrowband sources are present, m measurements are
collected at the output of a linear uniformly spaced array of m eiements
and m>d (Fig. 1-1). The Matrix Pencil approach is based on an invariance
introduced by the geometry of the array (linear uniformly spaced). It is
shown that the parameters of interest, i.e, the angles of arrival, are re-

lated to the rank reducing values of a matrix pencil generated from the
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SOURCE d

1 72 5 m-1 m
HIGH RESOLUTILON
PROCESSOR
¥
ARRAY oUTPUT
Fig. 1-1 Passive An_le of Arrival Estimation
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data. The method is shown to hold even in the presence of fully correlated

sources. Hovever, the method, as applied in [1], did not fully take into
account the separation of the noise and signal subspaces. The eigenvalues
generated from the data, as applied in [li, wvere obtained using a
dimensionality too small to allow for identification of the noisg subspace.
That is the reason why the method performed relatively poorly at low signal
to noise ratios (SNR). We have devised a scheme which displays improved
performance at low SNR. High resolution algorithms devised previously ig-
nored mutual coupling which may exist between array elements. In effect,
each element of the array was modeled as though it existed by itself. We
have studied the effects of mutual coupling and we devised schemes to com-
pensate for these effects. The case of wideband sources is much more com-
plex and has been treated by only a few authors. In this dissertation, we
extended the notion of the matrix pencil to the wideband case. Finally,
previous algorithms assumed a perfect sensor spacing. We studied the per-
formance of the matrix pencil for the case of small perturbations in the

sensor spacing.

1.2 SIGNAL MODEL

Before reviewing the work that has been done previously, it is
useful to develop expressions for the received signals and see how they
simplify for the case of narrowband signals. For this, assume that we have
a linear uniformly spaced array composed of m identical sensors. Let 4 be
the sensor spacing and d the number of sources. These sources are assumed
to be in the far field so that planar waves arrive at the array. It follows

that the output of the i-th array element can be expressed as




d
x3(t) = kzla(ek)sk(c-rik) £ng(t) 5 i1, 2, . . ., m,  (1.2-1)

vhere

a(6;) is the gain pattern of the sensor at angle &,

nj(t) is the additive noise,

Tyk is the time delay that source k takes to travel from the
reference sensor to the i-th sensor. With respect to the first sensor Ty
is given by

Tijk = (i-1)(4&/c)sin(€y), (1.2-2)
vhere ¢ is the propagation speed of the plane waves.

Let sy(t) be a modulated signal of the form

sp(t) = gr(t)cos(ugt+og (t)), (1.2-3)

wvhere all the sources are assumed to be emitting at the same carrier fre-

quency wgy. Therefore, syp(t-tji) is given by

sk(t—tik)sgk(t—tik)cos(wot-wotik+ak(t-tik)). (1.2-4)
Note that

woTig=(1-1) ¢y, (1.2-5)
where

¢ = wg(4/c)sin(6y). (1.2-6)

For narrowband signals, the modulation varies slowly relative to the car-
rier. In particular, assume that gy(t) and o (t) are essentially unchanged
over the duration of the observation interval. Then

i (t-T4) = g(t) (1.2-7)
and

g (t-Tip) = o (t). (1.2-8)

The expression for s)(t-tj,) simplifies to

S t-T4p ) =gy (t)cos (wpt-(i-1) dpeeq (t)). (1.2-9)




Clearly, for narrowband signals, we see that the time delay resuits in a
phase shift. When the signals sp(t) are broadband, gp(t-tjy) and o (t-Tj))
caa no longer be approximated by gyp(t) and o (t), respectively.
For narrowband signals, note that sp(t-tjx) can be written as

sp(t-Typ) = Ref gi(t) edk(t) -J(i-Lée ejupt (1.2-10)
where Re{.} denotes the real part operator. Let Ek(t) be the complex en-
velope of sp(t). Then

sp(t) = gr(t)ed®(t), (1.2-11)
Also define Qi(t) and ﬁi(t) as the complex envelopes of x;(t) and
nj(t), respectively. It is easy to see that

- d -~ . -~
xi(t)-kzlafak)sk(t)e-1(1-1)¢k +ng(t) 5 i=1, 2, . . ., m (1.2-12)

In the remainder of this dissertation, we will drop the """ and will assume
that we are dealing with the complex envelopes of the corresponding sig-
nals. The expression for the received signal at the i-th sensor will be ex-
pressed as

d s
X4(t) = kzla(ek)sk(t)e-3(1-1)¢k +#ng(t) 5 i=1, 2, . . ., m.  (1.2-13)

1.3 LITERATURE SURVEY

The problem of estimating the angular locations of sources is of
great importance and, over the years, has occupied many researchers. This
problem is the spatial frequency analog of the temporal problem dealing
with harmonic retrieval in additive noise. Consequently, research in direc-
tion finding has benefited a great deal from the advances made in spectral

analysis. The periodogram [2,3] was seen as one of the most promising meth-




ods in determining the locations of sources where one has to plot the func-

tion

Pyx($) = (&/m) | g xi(t)e-iie |2, (1.3-1)
vhere xj(t) is the received signal at the i-th sensor, 4 is the sensor
spacing and m is the total number of sensors. The periodogram has the ad-
vantage of being non parametric in the sense that.it does not rely on
knowledge of a model of the input processes. Also, it is robust in that it
is relatively insensitive to signal parameters. It is also simple to imple-
ment. However, a disadvantage is that the physical size of the array has to
be increased in order to achieve a better resolution. Typically, two
sources that are separated by less than one standard beamwidth cannot be
resolved. The standard beamwidth is defined as ¢ = 2n/m.

Another way of estimating the power spectral density (p.s.d) is by
using the autocorrelation sequence [4,5] defined as

. (m-1)

Lyx(1l) = 1/(m-1) nflxn+1(t)xn*(t) ; 1=0, 1, . . ., (m-1). (1.3-2)
When considering only a finite sequence, the power spectral density is

estimated by the correlogram which is given by

. L

Peg(®) = 8 I rp(l)e3le (1.3-3)
vhere L = (m/10) has been found to give good estimates of the terms in the
autocorrelation sequence. Note that this may require an unacceptably large

value of m. This value of L arises in an attempt to get good estimates of




ryx(1l) for all lags in the sum.

Parametric spectral estimation techniques [6,7] have been intro-
duced to overcome the limitations encountered with the periodogram or the
correlogram. Here, the spatial samples x;(t) are taken as the samples from
an autoregressive (AR) process of order p which, by definition, satisfies
the linear difference equation

- p
Xp(t) = - kZ apxp_g(t) + uy , (1.3-4)
vhere the coefficients ay’s ; k=1,. . .,p, are constant parameters and uj,

is a sample from a zero mean white Gaussian process with autocorrelation

sequence
R E[|“n|2]"’uu i 1=0
ruu(l): (1-3—5)
0; 10

In this approach, the angles of arrival are obtained as the maxima of the

pover spectral density

p .
1+ L ake‘Jk¢

PAr($) = (8pyy) {
k=1

-2
} (1.3-6)

vhere p,, and ap ; k=1,2,. . .,p are obtained by solving the Yule-Walker

normal equations

_ Exx(O) £xx*(1) o £xx*(P) —_ oy

Tax(1) Teu(0) o o . Ly "(p-1) || ay 0

. . . . . . =

| fex(P)  Tyy(p-1) . (@ Ilay, I Lo




and Exx(l) is the autocorrelation estimator given by

. (m-1)
ryy(l) = 1/(m-1) len+1(t)xn*(t) ; 1=0, 1, . . ., p. (1.3-7)
N=

Recall that the p.s.d in the correlogram method is given by

L
Prx($) = 8 T rp (l)e-ile (1.3-8)
wvhich means that the autocorrelation sequence is assumed to be zero for
|1|>L. This vindowing is the reason for the poor resolution capability of
the classical estimator. The AR p.s.d estimator uses the autocorrelation of
the correlogram methods and extrapolates estimates of the autocorrelation

sequence through

- L .
ryx(1l) = I apr 4,.(1-k) ; 1>0
. ‘% (1.3-9)
Tyux(l) = £ yx(l) 5 1<0
vhich results in a p.s.d given by
Pey(#) = 8 I rp(l)e-ile . (1.3-10)

This means that it extrapolates estimates of the entire autocorrelation se-
quence wvhich explains the high resolution property of the AR p.s.d
estimator. Burg [8] showed that the extrapolated autocorrelation function

has maximum entropy. This results in the most random time series which has

Exx(O), ;xx(l)' o v ey Exx(p) as its first (p+1) lag values.

Linear prediction techniques [9-11] can also be applied to the




direction finding problem. The idea here is to estimate the output of the

n-th sensor as a linear combination of the other sensor outputs ; i.e,

Y

. L
xp(t) = - £ afy x (1) 5 L<ncm (1.3-11)
=1
where L is the order of the prediction filter. The coefficients afk are
chosen such that ;he error p=E[|xn(t)-ﬁn(t)|2] is minimized. The mini-
mization results in the minimum error variance given by
Pmin = Txx(0) + rifa.

The equations involved in the minimization can be expressed as

§ Fex(0) Ty (1) o v ™M) 111 1 [ Puu ]

Fag(1)  Tyye(0) .« o . Iy *(L-1) || af 0

.
. . .

L rge(L) Tey(L-1) « . . 10 Jlafl Lo |

These equations are identical to the Yule-Walker equations when L=p. There-
fore, for L=p, the Yule-Walker equations arise in both the AR and linear
forvard prediction approaches. Backward linear prediction can also be in-

troduced where

L

;(n_L(t) = - L ab
k=1

k *n-L-k(t) . (1.3-12)

Again, the coefficients abk are chosen so as to minimize the error defined
as p-B[lxn_L(t)—in_L(t)|2]. This leads us to the same set of equations as
before and it can be shown that pfmin = pbmin and (afk)a(abk)* for k=1, 2,
« +» «y L. The forwvard-backward linear prediction (FBLP) is based on the use

of least squares for estimating the AR parameters. This technique is also




known as the least squares method [12-15]). Here, we have to solve an over-
determined set of equations of 2(m-p) equations in p unknowns, where p is
the order of the filter.

If the available data sequence is very long, sequential estimation
techniques are available for updating the AR parameter estimates. These
techniques are useful for tracking sources with slowly varying angles of
arrival. They are also known as adaptive algorithms. The least mean squares
(LMS) adaptive algorithm [16] is based upon the gradient steepest descent

adaptive procedure where the (j+1)-th element is given by
R p
X3,1(t) = -kzlak Xj41-k(t) - (1.3-13)

_A minimization procedure is then developed which results in a (j+1)-th er-
ror given by

e4,1(Pr3)=x4,1(O+(x5(P-10)Tap(3). (1.3-14)
The LMS algorithm attempts to find the minimum of the mean-squared error
quadratic surface. This search proceeds in a random fashion but, on the
average, the LMS algorithm converges to the optimum coefficient vector. The
condition for convergence is that the step size satisfies

0<E<(1/pry,(0)), (1.3-15)

vhere
] 2
Fux(0) =(1/3) T |xp(t)]% .- (1.3-16)
k=1
Another way of dealing with long data sequences is to use a recur-

sive least squares method (RLS) [17]. This method searches for the forward

prediction error filter vector 3p which minimizes the sum of the squared
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errors subject to the constraint that the first component of ap is unity.
This method leads to the same answer as in the LMS case. The only dif-
ference is that the adaptive gain is constant for the LMS whereas it is a
spatially variant matrix for the RLS. The LMS appears to be more attractive
than the RLS because of its robustness in its behavior, its insensitivity
to perturbations and its computational flexibility. It requires a number of
computations proportional to p whereas a number of computations propor-
tional to p2 is required for the RLS.

Ve have seen earlier how an AR process can be used to generate ob-
served data samples. The spatial samples x;(t) can also be modeled as
though they are generated by a moving average (MA) process [18] where by
definition, we have

- q q

Xp(t) = I by uy g +up = L by up g, (1.3-17)
where bgp=1, q is the order of the MA process and u, are samples from a zero
mean vhite noise process with autocorrelation sequence given by

E[ [up|?]=pyy 3 1=0

Fou(D)- {o ; 140

The pover spectrum is then given by

q .
1+ L bke‘3k¢

2
} . (1.3-18)
k’l [}

P(9) = (&) {

vhere ¢=(wD/c)sin(0). The angles of arrival are determined as the peaks of
this spectrum. To avoid solution of a large number of nonlinear equations,

the parameters by ; k=1, 2, . . ., q, can be estimated by approximating the
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MA process with an equivalent AR process of order p where p>>q. The parame-

ters of these two processes are related by

q 1; 1=0
{ (1.3-19)

a; + L bn aj_n 8(1l) =
n=1 0 ; 1#0.
It can be shown that the MA model is not a high resolution spectral
estimator because it does not model narrowband spectra very well.
AR and MA processes can be combined to form an ARMA process [20].

Here the spatial samples in(t) are modeled as samples from the process

. P q

Xp(t) = - T ag x5k + L by up g s (1.3-20)

k=1 k=0

vhere bosl, ajy a3, - - s A and bl, by,. . ., bq are constant parameters.

u, is a sample from a zero mean white Gaussian process with

E[ |up [21=pyy 5 120

ruu(l)- {

0; 10

-e

The power spectrum is given by

p
1+ I ape~Jk¢
k=l

q
1+ L bke'jk¢

-2
} (1.3-21)

H

The angles of arrival of the sources are determined as the peaks of this

Pyx($) = (8hyy) {

spectrum. Again, to avoid having to solve a set of nonlinear equations, the
Coefficients aj, aj, . . ., ay and by, by, . . ., by can be estimated by
approximating the ARMA process with an equivalent AR process of order
r>>(p+q). A least squares procedure can then be used to solve for the

moving average coefficients 1, Bl(q), Bz(q), o« e ey Bq(q). These ele-
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ments are then used to solve for the coefficient 1, él(p), éz(p),
.y ;p(p) knoving that

q .

ay =c¢; + Ibyey g (1.3-22)

n=1

wvhere c) are the parameters of the equivalent AR process.
The minimum variance spectral estimator (MVSE), also known as

Capon’s maximum likelihood estimator [25], does not make use of the stan-
dard maximum likelihood estimate (MLE). Instead, a constrained optimization
problem is solved. The MVSE generates a spectral estimate that describes
relative component strengths over spatial frequency, but it is not a true
p.s.d estimator. Let y; be the response of a transversal filter with input
xj(t). y; is given by

P
yi = T ap xj_k(t) ,
k=0

vhere ap ; k=1, 2, . . ., p, are the filter coefficients. These coeffi-
cients are selected so as to minimize the variance p=E[|yi|2], subject to
the constraint that a desired spatial sinusoidal input does not experience
distortion. It should be pointed out that this estimator is a non
parametric estimator.

The beam forming (BF) [27] algorithm is suited to single sources
vhere in effect, the observations are modeled as an A (Moving Average)
process.

Recently, subspace approaches have been introduced. These methods
are based on an eigenvalue-eigenvector decomposition of the correlation

matrix. This makes use of the fact that there is a relationship between the
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eigenvectors of the spatial correlation matrix and the source angles of ar-
rival. These methods are shown to yield asymptotically unbiased estimates
of such signal parameters as angles of arrival, number of signals, etc.
Schmidt [28) and, independently, Bienvenﬁ [30] were the first to correctly
exploit the measurement model in the case of a sensor array of arbitrary
shapes. Schmidt’s algorithm, called MUSIC (MUltiple SIgnal Classification),
identifies two distinct eigenspaces. The space associated with the smallest
eigenvalue which appears with a multiplicity of (m-d), wvhere m is the num-
ber of sensors and d is the number of targets, assuming m>d, is called the
noise subspace. The space associated with the d non zero eigenvalues is
called the signal subspace. The angles of arrival of the sources are
estimated via a search procedure which consists of choosing directional
vectors and correlating them with the noise space generated by the noise
eigenvectors corresponding to the noise eigenvalues. Since the noise space
is orthogonal to the signal space, the angles of arrival are the peaks in
the reciprocal of this correlation. Computationally, this algorithm is very
inefficient. Another disadvantage of MUSIC is that it cannot handle com-
pletely correlated sources. A pre-processing technique called Spatial Smoo-
thing [31], wvas then suggested for the case of a linear uniformly spaced
array. Spatial Smoothing uses a set of L contiguous subarrays (L<m).
(m-L+1) correlation matrices are added up to form a new correlation matrix.
This matrix is shown to be non singular. However, this processing decreases
the effective aperture size which reduces the ability of the array to
detect a sizable number of sources since the two are directly related.

Non search procedures were introduced to reduce such problems as
computational complexity, storage, etc., which are inherent in search pro-

cedures. A non search procedure using MUSIC was initiated by Barabell [32]
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for the case of a linear uniformly spaced array. Instead of plotting the
MUSIC spectrum, a root finding procedure is developed, where the roots cf
the polynomial are functions of the parameters of interest. An improvement
has been noticed, especially for the case of closely spaced targets.

Pisarenko’s method [33] is based upcn the fact that the covariance
matrix has a smallest eigenvalue of multiplicity (m-d). Thus, a repeated
eigenanalysis is required to determine the multiplicity of the smallest
eigenvalue. In practice, however, because the correlation matrix is
evaluated from finite data samples, it is very difficult to count the mul-
tiplicity of the smallest eigenvalue. More sophisticated approaches based
on statistical considerations have been developed [34-38]. Yet, the choice
of a subjective threshold make these methods undesirable. Wax and Kailath
[39] developed methods based on the information theoretic criteria intro-
duced by Akaike (AIC) and by Schwartz and Rissanen (MDL). The number of
signals is derived by minimizing the MDL or AIC functions. Recently, Zhao
et. al. [40] showed that AIC is inconsistent and further suggested a family
of consistent estimators of which MDL is a member.

ESPRIT ( Estimation of Signal Parameters via a Rotational
Invariance Technique) was later proposed by Roy and Kailath [43]. It is
based on an invariance introduced by the array gqeometry. It is shown to be
robust and computationally very efficient. The angles of arrival of the
sources are directly related to the yeneralized eigenvalues of a matrix
pencil formed from the data. However, the estimates obtained with this al-
gorithm are very biased at low SNR. Although the original version of ESPRIT
employed a least squares criterion, a total least squares procedure [44,45]
was then devised to overcome this disadvantage.

Yet, ESPRIT can not be used in the case of completely correlated
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sources. H. Quibrahim has shown that ESPRIT is only one of several possible

oerators that could be used in the Matrix Pencil Approach [1]. Two other
operators have been proposed which are referred to as the Summation Opera-
tor and Moving Window operator. The Moving Window operator is shown to hold
even in the case of fully correlated sources, thus outperforming ESPRIT.

Ouibrahim also showed [46] that the Moving Window, Prony’s method
and Pisarenko’s method are all equivalent in the sense that they check the
dependence/independence of some data vectors. S. Mayrargue [47,48] showed
that ESPRIT, TAM (Toeplitz Approximation Method) [49,50] and Tufts and
Kumaresan’s method [51,52] are all equivalent in the sense that they all
solve the same multidimensional system.

All of this work was done for the case of narrowband signals. The
case of wideband signals is much more difficult and has been studied by
only a few people. Su and Morf [53,54] suggested using a Modal Deccaposi-
tion of the signals along with MUSIC to solve for the angles of arrival. A
set of angles of arrival is obtained for each pole in the received spec-
trum. Thus, more signal parameters like poles and residues have to be
estimated.

A different way of approaching the problem is to decompose the
wideband signal into narrowband signals and then use the well known narrow-
band algorithms. At this stage two schemes were developed; post averaging
schemes and pre-averaging schemes.

The first scheme was used by Wax et. al. 55]. They suggested a
modified ver<ion of the MUSIC algorithm. The spatial spectral estimate was
formed by averaging (either geometrically or arithmetically) the MUSIC in-
ner products for each of the frequencies considered. This method is termed

as Incoherent processing. It cannot be employed in the case of signals ex-
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perienging multipath.

Vang and Kaveh [56] proposed a pre-processing scheme using linear
transformations to combine the various sub-bands into one single band. This
is called Coherent Wide-Band (CWB) processing. Only one eigendecomposition
is then performed at this reference frequency. This algorithm outperforms
the prévious one in many ways such as computation, applicability in the
case of coherent sources, etc. However, it suffers from the fact that
preliminary estimates of the angles of arrival are needed in order to form
the linear transformations. If these angles are clustered within a beam-
width, then the method performs well. Otherwvise, spatial prefiltering is
needed. .

Another wideband method was introduced by Buckley and Griffiths
[58] called BASS-ALE (Broad-Band Signal Subspace Spatial Spectrum Estima-
tion). They generate a signal subspace using a "stacked". vector snapshot.
The vectors obtained at each subbaﬁd are stacked on top of one another.
This algorithm is computationally more expensive than CWB.

A new coherent wide band algorithm was proposed by Kumaresan and
Shaw [60]. They make use of a bilinear transformation to transform each
sub-band into the reference band. This can be considered as a one step al-
gorithm. Also it does not need the a priori knowledge of the angles of ar-
rival. Hovever, it can 02.ly be applied to electronically small arrays. Its
performance deteriorates for targets near the endfires.

Recently, Ottersten and Kailath [61,62] proposed extending the
ESPRIT algorithm to wide band signals. They use the same model as is de-
scribed in Su and Morf [36] and ESPRIT is applied to determine the source

locations for each of the signal poles.
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1.4 WORK OUTLINE

The remainder of this work is organized as follows. Chap-
ter 2 introduces the principles of signal subspace processing, the pencil
theorem, (which is the basis of this work), and the Matrix Pencil approach.
Newv ways for evaluating the generalized eigenvalues are also proposed. All
of the algorithms discussed above assume-an ideal sensor environment in
vhich each sensor is assumed to exist by itself. Therefore, effects of
reradiation from these sensors are completely neglected. Chapter 3 deals
with the problem of mutual coupling between the sensors. Compensation tech-
niques are developed for the Matrix Pencil Approach using the Moving Window
and the ESPRIT operators. Chapter 4 is devoted to the extension of the
Moving Window to the broadband case. Three methods are devised. The first
is original in the sense that the Matrix Pencil approach is utilized with a
signal model not used previously in other approaches. The signals are
identified by their polés (natural frequencies) and their angles of ar-
rival. The second method utilizes the same model used by Su and Morf. How-
ever the analysis is carried out completely in the time domain. The third
makes use of the CWB of Wang and Kaveh. Chapter 5 analyzes the effects of
the noise and perturbations due to sensor spacing. A measure is introduced
and a geometric upper bound is derived for the Moving Window and ESPRIT op-
erators. Conclusions and recommendations for future research are presented

in chapter 6.
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CHAPTER 2

SIGNAL SUBSPACE PROCESSING

2.1 PRINCIPLE

Assume there are d sources emitting signals s(t) ;k=1,2,. . . ,d,
which are impinging on a linear array composed of m sensors. It is assumed
that d<m. Let the superscript T denote transpose. The received signal at

the i-th sensor can be modeled as

x;(t) = g s(t)aj (&) + ni(t), (2.1-1)
k=1
where
aj(8y) is the relative response of the i-th sensor to the k-th
source,
s(t) is the complex envelope of the signal emitted by the k-th
source,

ny is the additive noise assumed to have zero mean and variance .
In vector notation, ;his can be written as
X=AS+N (2.1-2)
vhere
gT = [X1,X2, « « « ,Xp]l= (mxl) received signal vector,
§T = [s1,89, « . . ,84]= (dx1) impinging signal vector,
ET = [nq,ng, . . . ,np]l= (mx1l) noise vector,
A =[aj ag .. . aq ]= (mxd) direction matrix,
a;T =[a1(8y) a3(8y) . . .ap(8;)]= (mxl) ith direction column
vector of A.

In all the subspace approaches that have been proposed the signals
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and noise are assumed fo be statistically independent and the noises nj are
assumed to be independent from sensor to sensor with a correlation matrix
given by o®I where I is the identity matrix. Let the superscript H denote
the Hermitian Transpose. The spatial covariance matrix is
R = E[X XH) = E[(as+N) (as+])E]
= E[as sHaH] + [N NH]
= AE[S sH]AR . 21 (2.1-3)
Let S=E[S §H]. Then R can be written as
R = asAf + o2I (2.1-4)
vhere
R is an (mxm) matrix.
Let (A 2 X 22732, . . . 2 Ap )} be the set of eigenvalues of R. Let
(V1s¥2,V30 =« < ,Vp ] be the set of the corresponding eigenvectors.
If S is non singular and with the assumption that m > d,we can
show that
1) the minimum eigenvalue of R is o with multiplicity (m-d),i.e,
M17M2=M3e « ¢ Mg=hnin=al.
2)the eigenvectors associated with the minimum eigenvalue, V4,1,
V4.2+ V443 + - « 1Yy, are orthogonal to the space spanned by the columns
of A.
These results lead to the following direction finding approach :
1) determine the number of sources d from the multiplicity of
Mnin*
2) use the orthogonality relation between the direction vectors of
the impinging sources and the eigenvectors corresponding to M\;j, to yield
the directions of arrival of the sources. We just have to "search" for

those direction vectors that are orthogonal to the eigenvectors cor-
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responding to X;i,. For this reason methods based on this approach are

called search procedures.

2.2 PENCIL THEOREM
2.2.1 Theorem

-Denote by C the field of all complex numbers.Consider two matrices

M and N of size (kxp).The set
{ Mka ;s A e C}

is said to be a matrix pencil. The matrices M and N are required to have
the following decompositions

M=EF

N=EDF
where

E is a (kxd) matrix and k > d

F is a (dxp) matrix and p > d

D is a (dxd) diagonal matrix where d;j; denotes the i-th
diagonal element.

If M and N are two matrices which have the decompositions cited
above and if E, F and D are all of rank d, then the rank of the matrix pen-
cil M-)N is decreased by 1 whenever

M o= (i1 5 is1,2,...,d.
These values of )\; are known as the gene;alized eigenvalues of the matrix
pencil.
Proof
Since
M=EF

and
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N=EDF,
M-AN = EF-)EDF = E(I-AD)F.
Thus,
rank (M-MN) = rank(E(I-AD)F) = min{rank(E),rank(F),rank(I-AD)}.
Howvever, by assumption
cank(E)=rank(F)=d
and |
rank(I-XD) is of rank d as long as (1-A4d;3)#0 3i=1,2,. . ,d.
If (1-M\jdjj)=0, which implies that Xg=(djj)~! ,rank(I-\D)=d-1. Therefore,
the rank of (M-MN) is reduced by 1 whenever

A=(dg)71 5 i=1,2,....,d.

2.2.2 Determination of rank reducing values
Note from above that two cases may occur. If k=p, M and N are
square matrices. The set of the generalized eigenvalues of the pencil M-)N
is defined to be the set of all elements )\j; such that
det(M-AyN)=0.
Vhen the generalized eigenvalues are distinct,the rank of M-AN is reduced
by 1 vhenever A\ equals one of these values. In the case where k>p, M and N
are non square matrices.Det(M-A;N) no longer exists since the pencil is not
square. For this reason we have to"make" tﬁe pencil matrix a square one.
This can be done by premultiplying the pencil M-AN by either MH or NH. This
can also be done by postmultiplying the pencil M-)N by either Ml or NH. ve
obtain
ME(M-NN) MM Nt
or

NH(M-N) =NHM-WHN.
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MH(H-AN) and NH(H-AN) are both square matrices (pxp). Notice that
ME(M-AN)=(EF)H(EF-)EDF)=FHEHEF- AFHEHEDF
=FAEHE(I-\D)F
and _
NH (M- N) = (EDF ) H(EF-\EDF) =FEDHEBEF_A\FHDHEHEDF
=FHpDHEHE (1-)\D)F.
Both equations have the decompositions required by the pencil theorem
since
FEEHE and F are of rank d
and
FBDHEHE and F are of rank d.
Because (I-AD) arises in all of these equations, we can say that the rank
reducing values of the pencils MH(M—XN) and NH(H—XN) are identical to those
of the pencil (M-XN).
Note that the pencils MH(M-XN) and NH(M-)N) have p generalized
eigenvalues. However, there is a method which relies on a singular value
decomposition (SVD) of the matrices M and N to obtain a matrix pencil which
has exactly d generalized eigenvalues which in turn are the rank reducing
values of the pencil (M-MN). The singular value decompositions of the
matrices M and N result in
M=UpSpVpH

and (2.2.2-1)
N=U_ S,V B,

where
Up = [Um; Umg . . . Ume ] = (kxk)

Umy = i-th right singular vector of M = (kx1),

I, | O
Sp = [ } = (kxp)
0 |o
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Inp = diag { omj omy . . . omy } = (dxd),

omy = i-th singular value of M

Vms [ml YEZ - .Yl‘_llp ] s(pxp)

Vm; = i-th left singular vector of M = (px1),
Up = [Ung Unp . . . Umy ] = (kxk) -

Uny = i-th right singular vector of N = (kx1),

L, | 0
Sn = = (kxP)
o |o
I, =diag { ony ony . . . ong } = (dxd),

on; = i-th singular value of N
Vo= [Vng Vny . . . Vn, | = (pxp)
Vn; = i-th left singular vector of N = (pxl).
Collecting the d principal left and right singular eigenvectors (cor-
responding to the d non zero singular values), we have
M= MY a Utz (v HE
and (2.2.2-2)
N =Nt = ut g (v D,
wvhere t denotes truncated and
Ut = [Umg Ump . . . Ung | = (kxd)
Vp' = (Vm3 Vmy . . . Vmg ] = (dxp)
Up® = [Ung Uny . . . Ung ] = (kxd)
Vp' = [Vng Vnp . . . Vng ] = (dxp).
Therefore,
(M=XN) = (MUY = (uptrvpHlawu te (v H . (2.2.2-3)
Pre-multiplying and post-multiplying both sides of equation (2.2.2-3) by

(U, )Y and V.t respectively, ve get
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(U HE Mty t = (U HButE v DBV AL (2.2.2-4)
This pencil is square and is of dimensions (dxd) and thus has d rank reduc-

ing values which are exactly its generalized eigenvalues.

2.3 MATRIX PENCIL APPROACH

As wvas stated earlier, the matrix pencil approach is based upon
the pencil theorem. Two matrices are formed from the data generated at the
outputs of the sensor array. The generalized eigenvalues of the pencil thus
formed are shown to contain the information about the locations of the

targets. In this section we discuss two different operators.

2.3.1 ESPRIT

Consider a planar array of arbitrary geometry composed of 2m
sensors arranged in pairs sc as to form m doublets having the same direc-
tional orientation with respect to each other. The elements of each doublet
have identical directional g«in patterns and are translationally separated
by a known displacement 4 (Fig. 2-1). Other than the obvious requirement
that each sensor have non—éero gain in the directions of the emitting sig-
nals, the beam pattern of the elements in the doublet are totally ar-
bitrary. Assume there are d (m>2d) narrowband sources centered at frequency
w, and that the sources are located sufficiently far from the array such
that the wavefronts impinging on the array are planar. Assume the sources
are located at azimuthal angles 6, k=1, 2, . . .,d and emitting signals
whose complex envelopes are denoted by sy, k=1, 2, . . ., d. Additive noise
is present at all 2m sensors and is assumed to be stationary with zero-
mean and variance ¢2. The signals received at the two sensors in the i-th

doublet can be expressed as
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Fig. 2-1 ESPRIT ( General Case)
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d
vi(t) -ktlsk(t)si(ek)+nix(t) = X3 (1)+n, (1)

(2.3-1)

d . .
vi(t) =k215k<t>e‘3““°’°’51"(°k’ 81(O)+ngy (1) = yi(t)+njy(t),

vhere g;(6) is the gain response of the i-th sensor to a source arriving
at angle 6.
Two vectors V and VW are then formed where
!T = [vy vy vy . . . ovl
and
HT = [wy wp w3 . . . wl.
V and VW can be vritten as
V-GS + Ny =X+ Ny
(2.3-2)
vhere G, ¢, S, N, and gy are the following matrices:
G=1[(g878 - - - & ]= (mxd) gain matrix,
gi = [81(84) 82(8y) . . . gn(8y)I=(mxl) ith gain column vector of G.
§T = [s1 s2 - . . sq]l= (dx1) impinging signal vector,
ng = [Nye Doy « + .« Npyul= (mx1l) noise vector,
EyT = [nly N2y « « - "my]' (mxl) noise vector,
and
# = diag(ed®1 ed®2 . . . ei%q)
where |
$p=-(wd/c)sin(§) , k=1, 2, : . .y d. (2.3-3)
Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor, we have

E(V VH] = GseH + o2 I
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(2.3-4)
E(v V] . gsefcH

vhere I is the (mxm) identity matrix and S=E[S §H]. Consider the matrices M
and N, where

M = E(V VE] - o2I = E[X XH] = GscH

- (2.2-5)
N = E[V W8] = E[Xx ¥H] = gseHcH .
Consider the pencil M-)AN.
M-MN = (GSGH)-A(Gs#GH) .~ Gs(T-aeH)GH. (2.3-6)

In the case where the sources are not fully correlated (hence, S is not
singular) and the direction of arrival of the sources are all distinct, M
and N are of rank d. The rank of this pencil is reduced by 1 whenever

Xkaej¢k = exp{-j(wd/c)sin(,)} ; k=1,2,. . .,d. (2.3-/)
The angles.of arrival are then given by

O=sin~l{jeln(y)/(wb)} ; k=1,2, . . .,d. (2.3-8)

2.3.2 MOVING VINDOW

Assume we have a linear array composed of m identical sensors with
uniform spacing D. Let there be d< m narrowband sources located at
azimuthal angles 6, ; k=1, 2, . . ., d (Fig. 2-2). Let the complex en-
velopes of the emitting signals be denoted by s(t); k=1, 2, . . ., d. As-
sume the sources are in the far field such that planar wavefronts arrive at
the array. With reference to the first sensor, the received signal at the

ith sensor is modeled as

d .
vi(t,0)=L sp(t)aj(B)+ny(t)=xj+ny; i=l, 2,. . .,m (2.3.2-1)
k=1

vhere

a;(8) = a eI(i-)#y
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¢y = -wDsin(®)/c ; k=1, 2, . . .,d,

w is the center frequency of the plane waves

¢ is the propagation speed of the waves

D 1s the sensor spacing |

ag=a(€y) is the beam pattern in the direction of the k-th emitter
and

nj(t) is the additive noise assumed to be zero-mean.

2.3.2.1 Original Version

*n the original formulation of the matrix pencil approach using
the moving window, Ouibrahim [1] generated (d+l1) vectors of length (m-d).
These vectors were thén used to form two (dxd) matrices M and N. Unlike the
ESPRIT approach, these matrizes are of rank d even in the presence of fully

correlated sources. The only restriction is that all sources have distinct

angles of arrival. For this case, there will always be d generalized eigen-
values of the pencil (M-AN) regardless of the size of the sensor array. In
the absence of noise, Ouibrahim’s choice results in generalized eigenvalues
whose corresponding eigenvectors span the signal subspace. However, in thke
presence of noise, the generalized eigenvalues are contaminated by the
noise so that neither the signal nor the noise subspaces can be identified.
This explains why the method performs badly f)r signal to noise ratios
smaller than 15 dB. To over-ome this deficiency, it is preferable to choose
a window of length L<{(m-d) and then form (m-L+1) vectors Vn of length L
vhere |
!nT = [Vpy Vo1 0 ¢ - e Vn+L-1] ; n=1,. . .,(m-L+1).
The limits of L will be derived later. It can be shown that V, can be writ-

ten as
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Vo = AB(N-Ls L N = X+ N (2.3.2.1-1)

vhere

1 1 c. .1
e el ®2 .. . el
A1=
QJ(L-1)81 i (L-1)dy ~ | _3(L-1)4y4
# = diag(eJ®1 eJ%2 . . . ei%q)
B = diag{aj, a3, . . .y a4 }
§T = [$1,89y¢:498q |y

HnT = [DpyPpygseeeesn,rg I-

The two matrices M1 and N are then formed

[ 4 1 7 ) Vi + . . V(m_L) ]
| | V2 -+« V(m-L+l)
My = | Vg  Yimry | = (2.3.2.1-2)
| | . :
L + $ ] L VL « o o V(m_l)
T H 1 [v2 - Y(meLeD) ]
| | V3 © s V(m-L+2)
Np = | V2. . Vp-Le1) | = (2.3.2.1-3)
I | . :
L 4 J | -V(L+1) o o + Vp d

Using the expression for V, ; n=1, 2,. . .,(m-L+1), the matrices M; and Nj
become

Mp = [ ABS ABeS . . . ApBe(™-L-Ds 1o [ Ny Ny . L Ny 1

Ny = [ AjB#S A1B#2s. . . A1B#(™-L-Ds 1o [ Ny Ny . . . Nepipe1y -
This can also be written as

My = AiB [S 85 . . . #("L-Ds o [N Ny . oL Ny 1

Ny = AjB® [S ¢ . . . #("L-Ds jo [Ny Ny . . . Nepopa1) 1-
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Let C be the matrix
C=[ S s . . . #(m-L)g ],
It can be shown that C can be expressed as
C=DU,
vhere

D=diag{s) sy . . . sq4},

1eit . . . d(m-L-)¢
1ei%2 . ., ed(m-L-1)4p

U =
1 eitq . . . ed(m-L-1)¢4

Let N? ahd N" be the matrices

N" = [Ny Ny« o o Nempy 1
N" = [ Ny N3 . . . Bpps1y 1
Then
M; = ApBDU+N’ :
and (2.3.2.1-4)
Ny = AyBDOU+N".
Assuming that the signals and noise are statistically independent and that
the noise components are uncorrelated from sensor to sensor with zero mean
and variance 62, ve get
E[M BNy ]-UBVY 4 L & I(n-L) (2.3.2.1-5)
E(N Pyy 1=UBelVY + L o2 1y (2.3.2.1-6)

vhere I(m-L) is the (m-L)x(m-L) identity matrix, Il(m-L) is the matrix

0100 . 0
oc10. 0
0001. 0
Il(m-L) = s & e e
0o0o00. .1
L0000 . . 0
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and V is the matrix VaE[DHBHAIHAlBD]. Defining

: L
qu = L ej(i'l)(¢p‘¢q)’
=1
Spq = Elsgsp 1,
*
3pq = 2qSpy

the matrix V can be written as

S11211F11 S21221F21 . . . . Sq33491F41
S12312F12 S22a322F32 . . . . S4oaqsFqr

V = l
S1421dF1d S2432dF2d - - - - Sqda@ddFdd

Define the matrices M and N such that

M = E[MyBM3]- L o? 1(p 1y =UBvU (2.3.2.1-7)

N = E[Ny®1]- L o Ij(p 1)=URdlvu. (2.3.2.1-8)
Note that M and N are (m-L)x(m-L) matrices. Assuming that (m-L) > d, M and
N will always be of rank d. Therefore, the limits on L aré

d <L <(m-d).
Consider the matrix pencil M-)N.

M-2N = UBvu-ullellvy = yH(z-aeH)vU (2.3.2.1-9)
vhich satisfies the requirements of the pencil theorem. Hence, the values
of A\ for which the rank of M-)N decreases by 1 are given by

N = e3% ; kal,2,...,d. (2.3.2.1-10)
The angles of arrival are given by

& = sin~l{jcln(N)/wD}; ke1,2,...,d. (2.3.2.1-11)

2.3.2.2 Nev Version

From equations (2.3.2.1-2) and (2.3.2.1-3), we see that we can
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form (L+1) vectors Z, of length (m-L) vhere Z, is given by

ng = [vr*,v:+1,....,v:+m_L_1} s r=1,. . .,(L+1),
and * denotes complex conjugate. We have purposely chosen to take the con-
jugaté so that we deal with correlation matrices of the form E[2 ZH}. Note
that this is the usual form for the correlation matrix of the vector 2. it

follows that M; and Nj are simply

- 2 H — 2 H -
214 224
- % - —2Z3 -
My = . and Ny = .
-zt - <2t - 1
Therefore,
L
E(MHMq] = ):1 E[2;249) (2.3.2.2-1)
and
L
E[N;HM;] = xl E[Z(1,1)2i %] (2.3.2.2-2)

The advantage of formulating the matrix pencil approach using the moving
windov in this fashion will be seen later when mutual coupling is present
at the sensor array. Using the original version, it was necessary to employ
a minimum mean squared error estimation scheme to compensate for the
mutuals. Using the new version, it was possible to devise a scheme that

provided a direct compensation for the mutuals.

3. Computer Simulation of the Moving Window Approach

The model used in the computer simulation consisted of two in-
coherent sources (d=2) incident on a linear array of eight uniformly spaced
sensors (m=8). For convenience, the sensors are assumed to be omnidirec-

tional. The Rayleigh resolution of this array is given by
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2/(m-1)(180/n) =16.37°.

The 2 sources were assumed to be located at 6;=16° and ©9=24°. The angular
separation of these sources is 8° which is half the Raleigh resolution. The
amplitudes of the sources were ganerated as statistically independent com-
plex random variables with zero mean and unit variance. The noise was also
chosen to be complex Gaussian with zero mean and unit variance. The sensors
vere positioned at half wavelength so that (wgD/c)=n. 100 snapshots wvere
taken for each of the 50 runs. The length of the window was varied frex
L=d=2 to L=(m-d)=6. In the plots of the sample variance and the mean-
squared error, the y-axis is defined as

y=10 logyp(.)-
Let ék be an estimate of © obtained at the k-th run (K is the number of
runs). The sample mean (ME), the sample variance (Var) and'the mean-squared
error (MSE) are defined respectively as .

K

ME(8) = (1/K) I 8,

K .
Var(e) = (1/K) I (8-ME(8))2,

k=1

MSE(8) = (1/K) § (8-9)2.
k=1
The results are shown in Fig. 2.3 to 2.8. From figures 2.3 and 2.4, note
that above 15 dB, the choice of L is not important as far as the sample
mean is concerned. However, below 15 dB, the performance of the Moving
Vindov degrades considerably with the choice of L=5 and L=6 ( Ouibrahim’s
choice). For L«2, 3 or 4, the performance of the method is comparable. By

choosing a window of length L=2 (smallest possible), an improvement of al-
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most 23 dB is achieved at a signal to noise ratio of 5 dB in the sample
variance and the mean-squared error. This improvement is due mainly to the
recognition of both subspaces (signal and noise) and the use of the
singular value decomposition (SVD). The SVD is known to be robust even in
the case of very ill conditioned matrices. The reduction of the 2 matrices
involved in the matrix pencil to the desired dimension (d) through the SVD

allowed us to effectively use the IMSL -routine (EIGZC) which computes the

generalized eigenvalues.
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CHAPTER 3

COMPENSATION FOR MUTUAL COUPLING

In the methods considered earlier, each sensor was trerted as if
it existed by itself. However, in practice, mutual coupling exists between
the array sensors. Because the mutuals change the sensor impedances, the
gain and radiation pattern of the array can be greatly distorted. In sub-
space methods this can significantly alter the eigensystems underlying the
estimation procedures. Gupta and Ksienski [70] investigated the effects of
mutual coupling on the performznce of an adaptive array. iu their treat-
ment, the matrix Zg characterizing the mutual coupling between the sensors
vas determined using a mathematical model which models the antenna array
consisting of m sensors as an (m+1) terminal network. This matrix was then
used to determine the sensor outputs that would have existed had there been
no mutual coupling. A compensation scheme was then developed to study the
method known as beamforming. Yeh and Leou [71] used the same mathematical
model and applied it to the MUSIC algorithm. Recall, in the MUSIC algo-
rithm, that one plots the inverse of the correlation between the noise sub-
space E, and the directional vector a(®), which we denote by ((En.a(e))z)‘
1, If mutual coupling is present, Yeh and Leou show that one has to plot
the function ((zn.zo-l.a(e))2)~1. Failure to do so results in severe
degradation of the estimates. Shau [44] considered the case of
deterministic signals in a noise free environment and eliminated the ef-
fects of mutual coupliné for the method known as MFBLP (Modified Forward
Backwvard Linear Prediction). In this chapter we develop algorithms to ef-
fectively compensate for the effects of mutual coupling when using the

Matrix Pencil approach with ESPRIT and the Moving Window.
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3.1 MODEL

Consider a linear array of m dipoles uniformly spaced at a dis-
tance D. Bach dipole is of length t and has a radius r satisfying the con-
dition r<<t. A load is attached to the center gap of each dipole
(Fig. 3-1). Assume there are d narrowband signals impinging on the array as
planar wvavefronts. The voltages induced by the assumed signals on the loads
are the outputs of the dipoles. Induced currents will appear on the
dipoles. These currents reradiate and generate scattered fields. The scat-
tered fields then induce currents on the neighboring dipoles. The process
of induction and reradiation causes the mutual coupling among the dipoles.

Using one sinusoidal expansion and weighting function per dipole,
the method of moment; [45,46] was used to obtain the matrix of mutuals
(Fig. 3-2). Denote the current distribution by J(z) (assuming longitudinal
distribution and neglecting all other distributions) and the j-th expansion

function by fj(z). Then

m
J(2)=L I(j)fj(z) (3.1-1)
j=1
vhere I(j) ; j=1, 2, . . ., m, denotes the unknown current amplitude to be
determined on each dipole. At a point (y,z) in the Y-Z plane, the scattered
field is given by
m

2(8)(y,2)=L 1(HEG)(y,2)
j=1
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wvhere Ej(s)(y,z) is the scattered field from the j-th dipole. The total
field will then be

E(y,2)=E(1M¢)(y,2) + E(S)(y,2) (3.1-3)
where E(IN¢) is the incident field. Let E, be the z-component of the total
field. A generalized voltage V(i) induced on the subsection spanned by the
function f£;(z) can be defined with respect to a weighting function w;(2) as

V(i)=F(Ez(y,2),vi(2)) (3.1-4)
vhere F is bilinear with respect to'Ez(y,z) and vj(y,z). Similarly, wve
define the voltage produced by the incident field on the i-th dipole by

v(ine) (1)-r(E{inc)(y,2),v (2)) , (3.1-5)
and the voltage produced by the scattered field on the i-th dipole by

v(s) (1)=F(E{S) (v,2),vi(2)). (3.1-6)
Thus, the total voltage introduced in the i-th dipole is

v(1)=v{ine) (1)v(s) (1),
wvhich, fér metallic scatterers, becomes

v(1)=v{ine)(1),v(s)(1)=0
or

v(ine) (1)=-v(s)(i). (3.1-7)

However,
m
v(S)(1) = L T(DEF)(v,2),%1(2))
j=1

m
.jzlz(j)F(E<§><y,z).wi(z)).

The total impedance between the i-th and j-th dipoles is defined to be
213-F(E(§)(y,2),v4(2)). (3.1-8)

Thus,
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m
v(s)(1)ar -z1J 1(5) ; i=-1,2,. . .,m. (3.1-9)

3=1

In matrix notation
v(s)az 1 (3.1-10)
where
V)T v(s)(1),v(s)(2),. . .,v(s)(m)]
and
1T=(1(1),I(2),. . .,I(m)].
The total impedance matrix Z can be decomposed into two parts as
2=2g+2p,
vhere
2o is the generalized impedance matrix
and
Z;, is the load matrix.
Assuming that all loads are loaded with the same load z;, the matrix Zp is
given by

'zl 1
3] 0

Zl J

The ij-th element of Z, therefore is
zij-zij+2181j,
vhere Z44 is the mutual impedance between the i-th and j-th dipoles. The

total voltages induced on a load z; are given by
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v -z 1
and
L=zt
Hovever,
yine) < 71 = 20z, -ty 4 y(L)
vhich implies that
V(L) (14292 -1)-1 y(inc), (3.1-11)
Let H be the matrix
B [I+292171]. (3.1-12)
H can be written as

[ 1+(z11/21) (212/2)1) e o o (21p/271)
(z91/27) 1+(292/23) . . . (23p/2])

! (zmi/zl) (zmé/zl) o e . 1+(z;m/zl) ]

'Thus, vhen incident signals are impinging on the array and in the presence
of additive noise, the outpﬁt of the linear array will be

!(L) =H-1 !(inc) + N.
For simplicity, let

E_!(inc)
and

Y-y(L).
Ve nov have a relationship between the incident signals and the outputs of
the array which is

Y=H1lx.+N (3.1-13)
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3.2 MINIMUM MEAN-SQUARED ERROR ESTIMATION
If ve try to use the vector Y observed at the output of the array
in the origina. formulation of the matrix pencil approach, it is not pos-
sible to obtain the decomposition needed for the matrix pencil. An estimate
g of X is, therefore, generated. This estimate is also used in ESPRIT.
Assuming that the signals and noise are statistically independent
and that the noise components are uncorrelated zero-mean random variables
with variance az, the minimum mean-squared error linear estimator results
vhen the error (g—g) is orthogonal to the observed data Y. Let g, RY,
vhere R is to be determined. Thus, we have
E{(X-X).1H}=0.
Howvever g- R Y which implies that
E(X YH)-RE(Y ¥H).
Recall that Y = -1 X + N. Thus,
E(X YH1-E(x (871 X + Mf)-E(x xHy(a-1)H
and
E(Y YH)E((B-1 X + y(a-1 X + M)
=(E~LEEX xByE-1HE + o2 1.
Let C denote the correlation matrix of Y. Then
c=E(Y Yi)= (--Legx xBy@a-1HE + o2 1,
Thus,
B (C-o? Ip)=E(x xTja-1)H -e(x yH}.
Therefore,
R E(X Y1) (E(Y ¥H))-!

R = H (C-02 I,) c-1. (3.2-1)
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3.3 APPLICATION TO THE MOVING VINDOW
Vith the new formulation of the moving window, pre-processing the
signals received at the output of the array will allow us to generate the
signals that would have resulted had there been no mutual coupling. Recall
that in the presence of mutual coupling, the received signal at the output
of the array can be modeled as
Y=81%x.+nN (3.3-1)
X represents the vector of incident signals.
Let HI-H-l. Consider the vector
Y* = HI* x* + N* (3.3-2)
vhere * denotes complex conjugate. (L+l) vectors Y, of length (m-L) are
then formed where
YT = [ ¥n® Y(nel)™ Y(ne2)" -+ Y(nem-L-1)" 1
For the sake of clarity, let m=5 and L=2. Then

Fy1* ] [ higg® higg® higs® hig* higs® I x* ] [ 01" ]

y2* hiz* higy* hips* higs* hips™ [| xp* np*
*

y3* = hi31* hi32* hi33* hi34* hi35* X3 |+ n3*

yo* | | hiar® higo® higg® higg* higs® || x| | ng*

L ys* 1 L hisy* hisy® hizs* higy* hiss* Il xs* | Lns* I.
Note that this matrix equation can be reformulated as

vl*- hill* hilZ* h113* xl* 0 hi14*' kz*. 0 0 hils*. k3*' hl*.
y2* |=[hig1* higp® higg*[[x*[+]0 0 higy™||x3™|+[0 0 higg™||xz* |+ [ng*
y3*] lhizg® hizp* hizg*llxs*] 10 0 hige*Jley*) 10 0 higs*]lxs*) Iny*]
¥2*] Mhigg* 0 0[x1*] fhigg* higs* higg™ %™ [0 0 hips™][x3*] [ng™]

y3* |=[higg* 0 Of [xo* |+ |higp* hins* higg*||x3*[+|0 0 hizg*||x4* |+ [ns*

y[.*_i ,1’1141* 00 3* 142* h143* hi(.[,*. .X(.*. 00 hi45*. .XS*J U‘A*.
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131* 00 xl*

y3* 132" 0 07[x2"] [hizs® hizs® hizs*)[x3*] Mma”

y4* [=|hig1™ O Of [x0* [+ [higz* 0 O [x3™ [+ |hig3* higy* higs™|[x,* [+ [ng*

* * * * %* * * N * * *
5 isy” 0 0Jix; 153" 0 0Jlx, is3” hisy  higs ] lxs 5

Using matrix notation, we have

Yy = HIj3 23 + BI1p 27 + HIgg 23 +

Yo = HIp 27 + HIpp 29 + HIp3 23 + N

Y3 = HI33 23 + HI3p 29 + HI3y 23 +

For the general case, it can be shown that Y, can be written as

(L+1)
Y, = L BHIy 24 + Ny (3.3-3)
i=l
vhere
* *x - * | *
ZiT = [ x4 X(i+1) X(i42) -+ * - X(i+m-L-1) ] ;s i=1, 2, . . ., (L+1)
EiT = [ ni* An(i+1)* n(i+2)* o o o n(i+m_L_1)* ] i=1, 2, . . ., (L+1)
and
- * *
:ini N . 2§n(i+m-L—1) N
(n+1)i . (n+1)(i+m-L-1)
HI,g = . for n=i
. i
L hignepp-1)1 bi(pnym-L-1)(i+m-L-1)
. *
e 310
(n+1)4 S
BIgg = | -« o0 for n>i
. * .....
Mpm-L-1)i O 0
00 . .. .0higein1)"
*
0o. » 0 hign,1)(iem-L-2)
BIpg = |« « ¢ ¢ o o for n<i
....... *
L 00 « M(nim-L-1)(i+m-L-1)
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Note that HI,; has dimersions (m-L)x(m-L). Let W be the vector

velntnt. .

V can be expressed as

HIyy HIyp
HIsq HI5g

ooooo

HI(Le1)1 BI(Le1y2 - - -

This can also be written as

- YL+

. HI1(L+1)

2(L+1)

- BI(L41)(L+1)

Vo= 24N,

T T,

2
2

2(L+1)

Assuming the signals and noise to be stétistically independent,

E(¥ ¥9) = Hy E[2 29)d)0

Therefore,

+ EIE'E'B]‘

E(z 28] - (H))-! (E(v vE]-E[NeNCHY) ((Hp)-1)H.

However E(2 EH] can be expressed as

[ E[2129]] Elzlzznl
E[Z;Z;7] Elzzzz ]
B[z 28)-| .
B(22,9] E(212,]
EIZ(L*1)Z1 ] EIZ(L 1)Z2"

« E[Z92 ]
“ s EIEZ_Z-L ]

.. B[22 9]
1.« ElZ(L.1)2

Elzlz(L+1) ]
E[_2-(L+1) ]

E[ZL_(L+1) )

1) E(Z(Le1)2(Le1)")

Ny

pa's

NeL+1)

(3.3-4)
ve get

(3.3-5)

(3.3-6)

Thus, after partitioning the matrix E[Z gH] into a total of (L+1)x(L+l)

matrices, each havingxorder (m-L)x((m-L), the matrices

L
M L E[Zy 24¥ ]

and
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L
N = I E[Z(4,1) 247 I

i=1
needed in the formulation of the matrix pencil (see section 2.3.3) are
readily obtained. By using such a formulation, we can effectively com-
pensate for the effects of mutual coupling using the moving window. Recall
that the i-th incident signal is given by

d
xi(t,g);zlsk(t)ai(ek); i=1, 2,. . .,m

vhere

aj(6) = ap eJ(i-1)#

o = -wDsin(@y)/c ; k=1, 2, . . .,d,

w is the center frequency of the plane waves

¢ is the propagation speed of the vaves

D is the sensor spacing

ap=a(6y) is the beam pattern in the direction of the k-th emitter
3.4 APPLICATION TO ESPRIT

Three different arrangements of the doublets are considered in
this section.
3.4.1 General Array

Ve assume that we have 2m sensors so as to form m doublets. Fur-
ther, we assume that each doublet is isolated from the others so that
mutual coupling exists only between the two sensors within each doublet

(Fig. 3.3). The observed signal at the i-th doublet can then be modeled as
vy x4 nly
= By-1 + s i=1, 2, . . ., m. (3.4.1-1)
vy ¥i n2; J.
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Let HIiaﬂi°1. HI{ can be written as

[ hill; hil2g }
hi21; hi224

Then
vi = hillyxy + hil2jy; +nly
and (3.4.1-2)
| vy = hi2lyx; + hi224y; +n2y.
Collecting all the vi’s in a vector V and all the wy’s in a vector W, we
have

V- HIj

1<

+ HIlZ

I
+

N

(3.4.1-3)
¥V =HIy1 X+ HIpp Y + N, ,

vhere HI;q1, HIjj, HIjy, HIyy, X, Y, N; and Ny are given by

HI;; = diag (hilly, hilly, . . ., hillp },
HI;, = diag {hil2;, hil2,, . . ., hil2_ },
HI;, = diag (hi2ly, hi2ly, . . ., hi2l_ },
HI;p = diag (hi22y, hi22,, . . ., hi22 },

X =[x, X9y « « +, xm]T,
Y= [y1y Y20 « « oy XglT,
Ny = {nly, nl3, . . ., n1 )T,
Ny = [n2q, n2y, . . ., n24]T.
Consider the vector Z defined by
z- vt ¥t T

Z can bé written as
HI1; HIgH X N
Z = + (3.4.1-4)
HIz1 HIz Y Ny 4.
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Assuming that *he sigrals and noise are statistica’ly independent and that
the noise components are uncorrelated from sensor to sensor wi:h covariance
matrix ozlzm, vhere I, is tae (2mx2m) identity matrix, then C,, = E[2 g“]

is given by

HIy; HI;p § [ E[X X8 E(X YH) I;1 HIy)
o | s ] | Il

H
] + @Iy (3.4.1-5)
HIy) BIzp | LE[Y X9) E[Y ¥

Iy BIyp

Let ﬁz be the matrix

- [ HI, HIyg ]
HZ =
HI,9q HI;y

Then

E(X xf] E[X §f) ]

(Hy)~1 (Cppy -0?I9p) ((Hy)~hHH - [ (3.4.1-6)

E[Y x8)] E(y YH] | .

Having recovered the matrix on the right side of equation (3.4.1-6), the
matrices M=E[X §H] and N=E[X IH] can be identified. Recall that incident
signals are expressed as

d
x3(t) .REISk(t)gi(ek)

d
yj(t) = L sk(t)e‘j(WA/c)Sin(ek) g1(8)
k=1

vhere gi(6)- is the gain response of the i-.h ~ensor to a source arriving
at angle 6 . The matrices M and N can be decomposed as
M = GSGH and N = Gs#igH | (3.4.1-7)

wvhere G, S and ¢ are given by
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G=1[g1 8 + - - g ] = gain matrix

s=B[s s9],

§T = [sy s9 . . . sq] = impinging signal vector,

® = diag | ej¢1, ej¢2, e e ey el td 1,

$p=-(wd/c)sin(@) , k=1, 2, . . ., d
Therefore, the effects of mutual coupling have been eliminated and the rank
reducing values of the matrix pencil (M-MN) are given by

N = e~3(wd/e)sin(8) ; kl1,2, . . .,d. (3.4.1-8)

and the angles of arrival of the sources are given by

& = sin~1{jln(N)/(wd/c)} ; k=1,2, . . .,d.  (3.4.1-9)

3.4.2 Linear Array
3.4.2.1 OVERLAPPING CASE

Consider a linear array of (m+l) sencors and assume there are d
(d<m) narrowband sources located at angles & k=1,. . .,d. In this case we
consider two sub-arrays consisting of the first m sensors and the lastAm
s 1sors (Fig. 3.4a). The observed signal vector at the output of the array
caa be written as
Y =H1x+nN (3.4.2.1-1)

Let HI=A-1. HI can be written as

hiyy higp -+ Bligmey
nizy hizg - - -« hig(ma)
hime1)1 higme1y2 - - -+ higmel)(med)
Thus, if
Yi=(y1 y2 - - - 2 L
and
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X1 X2 X3 X4 Xm-2 Xm-1 Xm X+l

Fig. 3.4a ESPRIT : Linear Array
Overlapping Case.

X3
l ! | B
Xm-3 *m-2 Xm-1 Xp
I ] | |
X1
Fig. 3.4b ESPRIT : TI.inear Array

Non-Overlapping Case.
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Youlyz ¥3 + -« Y(me)lT
we can vrite

¥ = HI1; Xy + HI g Xp + (3.4.2.1-2)

T
—

and

Yy = ‘iIgq Xp + HIpp Xp + Ny , (3.4.2.1-3)
vhere HIyy, HIyp, HIy;, HIyy, Ni, Nj, Xj.and X, are given by

Xi=[xq x5 . . . xm]T,

Xo={x9 x3 . . . x(m+1)]T.

BIjp = (hilly hillp . . . hilly ],

hilly= [hiqq hipy . . . higy}T; i=1,...,m,

HIIZT = [9_ 0. .. 9 hill(m+1) 1,

HIp T = [hi22; 0. . .01,
HIgp" « [hi22p hi223 . . . hi22(p,1) I,
hi22;= [higg hizj . . . hi(g,1)31Ts 122,...,(me1),
Ny = [ng, ngy, . . «, nm]T,
Ny = [ng, n3, . . ., n(m+1)]T.
Consider the vector Z defined as
2= (TRt T

Z can be vritten as

BIy; BI;) 2.5} N
2= + (3.4.2.1-4)
HIzy HIpp .9} Np 1.
Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor with variance

o2, then C,, = E[2 2H] is given by
I, HI [X1X,8] E[X1X,H]7 MI{; HI{,]H I1
11 BI12] [E(X1X) X1X2 11 HI1 m Ilp
Cpz= +o? . (3.4.2.1-5)
Ipq HIpp) E[X9%1%) E[X9XoM1] 0I5y Iy, 2n Ip
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Let ﬁ3 and [i] be the matrices

- HIll HIIZ
83 =

HIZl HIjy
and

. Iy 11,
0[]
12, Ip

vhere I, is the identity matrix and Il; and I2; are

Ilp = |« o v o v v o , 12, = 11T

00000000

Then

- 1 == _1q | E* x1H1 E(x; X
(H3)™% (Cpp -o[I]1)((H3)~1)"a o o (3.4.2.1-6)
E[X2 X17] E(X; X57] 1.
Having recovered the matrix on the right side of equation (3.4.2.1-6), the
matrices M=E[X1X;H] and N-E[glgzﬂl can be identified. Recall that the i-th
incident signal is given by

d
xi(t'g);zlsk(t)ai(ek); i=1, 2,. . .,(m+l)

where

aj(6y) = ap eJ(i-1)

$ = -wDsin(6y)/c ; k=1, 2, . . .,d,
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w is the center frequency of the plane waves
¢ is the propagation speed of the waves
D is the sensor spacing
ag=a(6y) is the beam pattern in the direction of the k-th emit-
ter.
It can be shown that M and N have the dgpompositions
M = ASAH and N = as#fiaH ' (3.4.2.1-7)
vhere A, S and ¢ are the following matrices
s=E(s sf],
§T={sl, . « « y8q) impinging signal vector,
A=1lagay...a]
aj = [ a(8y) a(ei)ej¢i .« . a(ei)ejm¢i],
$ = diag [ e3%1, . . ., eJ% ].
Therefore, the effects of mutual coupling have beén eliminated and the rank
reducing values of the matrix pencil (M-MN) are given by
A = eI (O/OSIN(O); 11,2, . . .. (3.4.2.1-8)
The angles of arrival of the sources are given by

& = sin~l1{jln()/(wb/c)}; i=1,2, . . .,d.  (3.4.2.1-9)

3.4.2.2 NON-OVERLAPPING CASE
In tuis case a linear array composed of 2m sensors is used. Two
neighboring sensors are considered as a doublet so that m doublets are
formed (Fig. 3.4b). Let there be d (d<m) sources. Again, the received sig-
nal at the output of the array is modeled as
Y=HI X+ N (3.4.2.2-1)

where HI is given by
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hijp h?lz e e h%l(Zm)
h121 h122 « e e hlz(zm)

HI = | . e e e e e

.....

hi(Zm)l hi(zm)z . e e e hi(zm)(zm)

Let v4 and wvi be the signals received at the i-th doublet.Then

Vi = ¥(2i-1) .
and ; 131, 2’ s o ey m.

Vi = Y(2i)
Collecting all the vj’s in a vector V and all the wj’s in a vector W , ve
have

V aHIyg X) + HI17 X9 + Ny (3.4.2.2-2)

and

=

= HIz; X3 + BIpp X5 + No _ (3.4.2.2-3)

vhere HIyqp, HIyy, HIyq, HIyy, X3, Xj, Ny and Ny are given by

X1=[x1 x3 -+ . x(2p-1)17,

§2’[x2 X4 o - - x(zm)]T,

HIjT = [hilly hilly . . . hilly ],

hillis [hi(Zi—l)l hi(21_1)3 . . . hi(21-1)(2m—1)]; i=1, 2, . . ., m,
HI15T = [hil2 hil2; . . . hil2; ],

hil2i= [h1(21_1)2 hi(21_1)4 . .. hi(Zi—l)(Zm)]; i=1, 2, . . ., m,
HIp1T = [hi21; hi21; . . . hi2l ],

hi2l;= [hi(zi)l hi(21)3 « .o hi(Zi)(zm—l)]; i=1, 2, . . ., m,

HIpoT = [hi22] hi22;, . . . hi22; 1,

hi22;= [hi(Zi)Z hi(21)4 . e . hi(Zi)(Zm)]; i=1, 2, . . ., m,

Ny = [ng, n3, « .+« negpenylT,

Ny = [nz, N4y o o oy nzm]T.
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Consider the vector Z defined as
z = vt ynT

Z can be written as

HIyq HIjp X1 Ny
Z - + (3.4.2.2-4)
HIy HIpj X2 Ny

Assuming that the signals and noise are statistically independent and that
the noise components are uncorrelated from sensor to sensor with covariance
matrix azIzm vhere Iy, is the (2mx2m) identity matrix. Then C,, = E[2Z zH)

is given by

1.7 BIp] [EIX1X1H) E(XX81 Iy HIp57R
Cpz= + @Iy . (3.4.2.2-5)
I51 BIppl IE[XoX1®) E[XyX,H1) AT,y HIy,

Let §4 be the matrix

- HI1; HIyp
Hy =

HIZI HIZZ
Then

. - E(X; X181 EB(%; %50]
(Hz.)"1 (Cz, -GZIZm) ((Hz.)"l)H = [ . . (3.4.2.2-6)
E[X3 X171 E[X; Xp71 J.
Having recovered the matrix on the right side of equation (3.4.2.2-6), thg

matrices M=E{X;X;®] and N=E[X;X,H] can be identified. The i-th incident

signal can be written as

d
x1(t,0)=L sp(t)ag(Q); i=1, 2,. . .,2m
kel
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vhere
ay(8y) = ap eI (i-1)é
¢y = -wDsin(@)/c ; k=1, 2, . . .,d,
w is the center frequency of the plane waves
¢ is the propagation speed of the waves
D is the sensor- spacing
ay=a(6y) is the beam pattern in the direction of the k-th emit-
ter.
M and N have the followving decompositions
M = ASAH and N = as#fal | (3.4.2.2-7)
vhere A, S and ¢ are given by
A=lagag...al
ag = a(8y) a(ey)ei2®i . . . a(e;)ed(2m-2)¢4),
s=E[s sf],
§T-{sl, . « « »Sq) impinging signal vector,
#=diag [ eI®1 &3%2 . . . eI% ],
Therefore, the effects of mutual coupling have been eliminated and the rank
feducing values of the matrix pencil (M-)\N) are givén by
N = e-dlwd/c)sin(@); yay,2, . . . ,d. (3.4.2.2-8)
The angles of arrival of the sources are thus

& = sin~1{jln(0y)/(w8/c)}; k=1,2, . . .,d. " (3.4.2.2-9)

3.5 Computer Simulation
The scenario used for this simulation consisted of two incoherent
sources (d=2) which are incident on a linear array consisting of eight

uniformly spaced half wavelength dipoles (m=8). The sources are assumed to
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be located at 81=16° and 6;=24° . The noise was simulated to be white
Gaussian with zero-mean and unit variance. The sensor spacing was assumed
to be half wavelength such that wD/c¢ = n . The load impedance was taken to
be the complex conjugate of the self impedance. The statistics were derived
from 50 runs wvhere 100 snapshots were taken in each run. The results are
shown in Fig. 3-5 to 3-16. In these figures, (1) represents the moving
wvindow, (2) and (3) represent ESPRIT for the linear case when overlapping
and non overlapping arrays are considered, respectively, and (4) cor-
responds to ESPRIT used in a general case. Without compensation, note that
all algorithms fail to accurately locate the two sources due to the distor-
sion introduced by the mutual coupling. With the compensating schemes de-
veloped here, all algorithms identify the locations of the two sources cor-
rectly. However, ESPRIT used in a Linear Overlapping Case performs much
better than the remaining algorithms. This is due to a larger array aper-
ture. However, our objective was not to perform a comparison between the
different algorithms but to derive effective methods to compensate for the
mutual coupling effects. This has been achieved and it is shown that com-
pensation of the mutuals is likely to be a necessity if acceptable per-
formance is to be obtained in practice. In the different figures for the
mean-squared error and the variance, the y-axis is defined as

y=10 logyo(.)-
Let ék be an estimate of © obtained at the k-th run (K is the number of
runs). The sample mean (ME), the sample variance (Var) and the mean-squared
error (MSE) are defined respectively as

K

ME(®) = (1/K) I 8,
k=1
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K
Var(e) = (1/K) I (& -ME(6))2,
kel

K -
MSE(8) = (1/K) I (&-6)2.
k=1
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Without Compensation: ANGLE=16°
19 T . T T

TN / ____________________________ o |

17+ (1) (2) -

SAMPLE MEAN

16

15

T

14}

13+

12+

11

(4)

SNR (dB)

(1)-Moving window

(2)-ESPRIT: Linear Overlapping Casc
(3)-ESPRIT: Linear Non Overlapping Casc
(4)-ESPRIT: General Casc.

Fig. 3.5 Sample Mcan of the Angle Estimate at 16°
Without Compensation for the Mutuals.
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SAMPLE MEAN

17.2

17

16.8

16.6

16.4

16.2

16

15.8
5

Minimum Mean-Squared Error Estimation: ANGLE=16"

T T T Y

(1)-
(2)-
(3)-
(4) -

Fig.

10 15 20 25 30
SNR (dB)

Moving Window

ESPRIT: Linear Overlapping Case
ESPRIT: Linear Non-Overlapping Case
ESPRIT: General case.

3.6 Sample Mean of the Angle Estimate at 16°
With Compensation for the Mutuals When Using
a Minimum Mean-Squared Error Estimation.

69




SAMPLE MEAN

16.9

Dircct Mcthod: ANGLE=16°

16.8}"

16.7

16.6

16.5

16.4

16.3

16.2}

16.1

16

T T T T

Fig.

SNR (dB)

-Moving Window

-ESPRIT: Lincar Overlapping Casc
-ESPRIT: Linear Non Overlapping Casc
-ESPRIT: General case.

3.7 Sample Mean of the Angle Estimate at 106°
With Compensation for the Mutuals When Using
the Direct Method.
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MSE (dB)

16

[+

Without Compensation: ANGLE=16

h (4)

14 el h . .

L [ .............................. |
(3)

10F 1

) (1)
(2)
6F R . / 4
4 1 — i . 1
5 10 15 20 25 30
SNR (dB)

(1)-Moving Window

(2)-ESPRIT: Lincar Overlapping Casc
(3)-CSPRIT: Lincar Non Overlapping Casc
(4Y-ESPRIT: General Casec.

Fig. 3.8 Mcan-Squared Lrror of the Angle Estimate
at 10° Without Compensation for the Mutuals.
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MSE (dB)

Minimum Mean-Squared Error Estimation: ANGLE = 160

T T T

(1)-Moving

(2)-ESPRIT:
(3)-ESPRIT:
(4) -ESPRIT:

Fig. 3.9

SNR (dB)

Window
Linear 2verlapping casc
Linear Non Overlapping Case
General Casc.

Mean-lquored Error of the Angle Estimate
at 16° Wit Comnensation for the Mut» als
When Using a Minimum Mcan-Squarcd Lr-or
Estimation.
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MSE (dB)

Direct Method: ANGLE =16 °

5,_ T T T T

SNR (dB)

(1)-Moving window

(2)-ESPRIT: Linear Overlapping Casc
(3)-ESPRIT: Lincar Non Overlapping Casc
(4)-ESPRIT: General Casec.

Fig. 3.10 Mecan-Squared Error of the Angle Lstimate
at 106° With Compensation for the Mutuals
When Using the Dircct Mcthod.
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SAMPLE MEAN

Without Compensation: ANGILE=24 °

38 . ' . y
361 (4)
34} ]
32¢ ]
30+ (1) .
P ity S 1
(2)
26~ .................................... 7
........... /
(3)
24 : . : '
5 10 15 20 25 30
SNR (dB)
(1)-Moving Window
(2)-ESPRIT: Linear Overlapping Casc
(3)-ESPRIT: Linecar Non Overlapping Casc
(4)-ESPRIT: General Casc.
Fig. 3.11 Samplc Mcan of the Angle Estimate at 23°

Without Compensation  for the Mutuals.
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SAMPLE MEAN
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Minimum Mecan-Squared Error Estimation: ANGLE=24°
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Fig. 3.12

1

2)-ESPRIT:
5)-ESPRIT:
4)-ESPRIT:

SNR (dB)

Window
Linear Overlapping Case
Lincar Non Overlapping Casec
General Casc.

Sample Mecan of the Angle Estimate at 24°
With Compensation for the Mutuals When
Using a Minimum Mcan-Squarcd Error
Estimation.
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SAMPLE MEAN
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Direct Mcthod: ANGLE=24""

2.6

(1) |
(3) \ .
' (4) |
10 15 20 25 30
SNR (dB)
(1)-Moving Window
(2)-ESPRIT: Linear Overlapping Casc
(3)-ESPRIT: Linear Non Overlapping Casc
(4)-ESPRIT: General Case.

Fig. 3.13

Sample Mcan of the Angle Estimate at

With Compensation for the Mutuals When

Using the Dircct Mcthod.
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MSE (dB)
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Without Compensation: ANGLE=24°

(1)-Moving Window

(2)-ESPRIT: Linear Overlapping Casec
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(4)-ESPRIT: General Case.

Fig. 3.14 Mcan-Squared Lrror of the Angle lstimate

at 24° Without Compensation
Mutuals.
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MSE (dB)

Minimum Mecan-Squared Error Estimation: ANGLE = 24
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Fig. 3.15

Linear Overlapping Casc
Linear Non Overlapping Case
General Cace.

Mcan-Squared Error of the Angle Estimatce
at 24° With Compensation for the Mutuals

When Using a Minimum Mean-Squared Error
Estimation.
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MSE (dB)

10

Dircct Mcthod: ANGLE =24 °

(1)-Moving

(2)-ESPRIT:
(3)-ESPRIT:
(4) -ESPRIT:

Fig. 3.16

SNR (dB)

Window
Linear Overlapping Casec
Lincar Non Overlapping Casc
General case.

Mecan-Squared Error of the Angle Estimate
at 24° With Compensation for the Mutuols
When Using the Direct Method.
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CHAPTER 4
EXTENSIONS TO WIDEBAND SIGNALS

Different methods for estimating the angles of arrival of wideband
signals can be developed depending upon the approach. In this section we

devise three new techniques for the matrix pencil.

4.1 TRANSIENT SIGNALS

In this section we model each source as a sum of decaying exponen-
tials. This representation is appropriate for non stationary signals. Con-
sider a linear array which consists of m identical wideband sensors
uniformly spaced at a distance A. Assume there are d broadband sources im-
pinging on the array as planar wavefronts and emitting signals whose com-
Plex envelopes are denoted by sp(t). The signal received at the i-th sensor
can be expressed as

d
xi(t)=L a(6y) sp(t-Ty) +ny(t); i=1,2,. . .,m (4.1-1)
k=1"

vhere 14, is the time delay that source k takes to travel from the
reference point to the i-th sensor. Taking the reference as the first
sensor, Ty can be written as

Tik=(i-1)(4/c)sin(§) (4.1-2)
where c¢ is the speed of propagation of the waves. Assume the k-th source
can be represented by a sum of exponentials having natural frequencies pjj;

1=1, 2, . . ., M(k), Thus, sp(t) can be written as
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M(k)
s(t) .lxlblk ePlkt , (4.1-3)

vhere the coefficients by, are assumed to be random. Therefore, the

received signal xj(t) can be expressed as

d u
xj(t) = L I ey ek o ony(e); is1,2,. . .,m, (4.1-4)
kal 1=1
where
"k = -(8/c)pixsin(ey), (4.1-5)
and
cik = a(8g)bypePlkt. (4.1-6)

Given the data collected at the output of the array, the problem is to
estimate the angles of arrival of the sources. From the above data, a
matfix pencil is generated. It is shoﬁn that the rank reducing values of
this pencil are related to both the angles of arrival and the natural fre-
quencies of the sources. The natural frequencies of the sources are assumed
to be unknown at the receiver. Therefore, these natural frequencies have
first to be estimated and then be used to solve for the angles of arrival.
Thus, a simultaneous estimation of the natural frequencies and the angles
of arrival is needed. To do so, the first sensor is followed by an equally
spaced tapped delay line consisting of m taps with successive delays of T
seconds. In addition the received signal at the i-th sensor is delayed by
an amount of(i-1)T; i=2, 3, . . ., m, (Fig. 4-1). The signal at the output

of the h-th delay following the first sensor is

d MK
Yh=x1(t-(h-)T)=Z £ cy) e{M-DYlkiny (t-(h-1)T); h=0,1,...,(m-1) (4.1-7)
kal lal

81




1717 B X, | —
T T 2T
Yz L‘—-— 72 l(-— 7,]
T
k—7,
T

l ym
Fig. 4.1 Wideband Array Confliguration,
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where
Mk = -P1kT- (4.1-8)
The signal at the output of the delay connected to the i-th sensor can be

expressed as

d Mk
zyaxq(t-(1-1)T)=L I cypei-D 41+ ing (t-(4-1)T)5i=2,...,m. (4.1-9)
kel 1=1
Let
Yi3=(913+vij) (4.1-10)
and
d
M= g M(K) | (4.1-11)
k=1

At this point we assume that all sources have distinct natural frequencies.
This condition is relaxed later on. With the knowledge of the parameter M,
ve form (m-L+1) vectors X,, (m-L+l) vectors Y, and (m-L+1) vectors Z, of
length L where

M <L < (m-M)

and
Xn = [Xp» Xpe1r + + o» Xpepoy 1%y 0=1, 2, . . ., (m-L+1)
Yo = (Yns Ynelr + + +» Yneloi 1% n=l, 2, © . ., (m-L+1)
Zn = (2 25,10 « ¢+« 2p4L-1 ]T. n=1, 2, . . ., (m-L+1).

It can be shown that X, Y, and Z, can be decomposed into

X, = A1(0-1) ¢ 4 nNx, (4.1-12)
Y, = a2r(n-1) ¢ . ny , (4.1-13)
2, = A3¥("-1) ¢ 4 Nz, (4.1-14)

vhere Al, A2, A3, &, T, ¥, C, NX,, NY,, N2, are given by

Al=[ Aly 3 Alj,y - - . Aly(d) 4 ],

83




A2=[ A2y .1 A25,1 . - - A2(d) q I
. één(d),d 1,

cell-1)433 1T,

Ad=] A31 1 A37,1 - -
Aly g =[1eb) ..
.e(l-Dri T,
ce(l-Dviy T,

égi,j = [ 1 eYij . .

A3j 5 = [ 1e¥ij. .

#=diag{ e?11 . . . e®M(d)q;,
T=diag{ eY1l . . . em(d)qy,
Y=diag{ e¥11 . . . ew(d)qy,

C = [e11s €210 « - 5 cy(d)g 1T,
N_xris[nxn,nxn+l, LI

NY =[nyn,ny  1s-c--

<oMXp,y-1 Iy
'NYn4L-1 ]y
NZ,=[nz,,nz, 1,.-..,024,1,_1 ]
nxj, nyj and nzy are introduced here for simplicity of notation. Actually,
they are given by

nxy = ny(t),

ny; = nq(t-(i-1)T),
and

nz; = nj(t-(i-1)T).
Note that nx; = nyj = nzj. Six matrices Mp, Nj;, P;, Q1, Ry and S; are

formed vhere

r 4 + r 4 +
I I | I
Mp = | X - X(m-L) Ny = | X2 « X(m-L+1)
I I I I
1 i m i
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r 4 + ) R +
I I l I
Py = | Y3« oo Yqpp) [+ Q=] Y2« Yn-L+1)
| | I I |
L 3 § Na N
1 + ] [ 0
| I | |
Ry =121+ -Z%muL) |[351= (22" - ZnmLs+l)
I I I I
[ 4 ¢ ] | L ¢
My can be revritten as
Tt 0 1 [t
| I [
My = | AlC AldC . a1e(m-L-1) ¢ | . | NX; NX, .
| |
[ ¢ i ] R

My = Al [ C 4C .

. #(m-L-1)c g4 [ MKy NX)

Similarly, it can be shown that

Ny = Al2 [ C &C . .
Pp=A2[CIC. .

A2T [ CTC .

(=]
—
[ ]

MmMlCcY ..

SlaA3Y[§Y(_:.

LTl gy [Ny Y L

¥l cg ey Mx;

LD ey Ny, MYy
. ¥m-L-1) ¢} 4 [ NZy NZ; ..

- ¥m-L-1) ¢y [ Nz NZy

These matrices have the following decompositions

My = Al C Ul + N1/
Py = A2 C U2 + N2'

Ry = A3 C U3 + N3

and N1 = A1 C & Ul + N1"
and Q; = A2 C I U2 + N2"

and Sy = A3 C Y U3 + N3"

. :
I

. gz(m-L)

| ,

4 )

: §§(m—L) 1.

« NX(m-L+1) Is
« M) 1

« M(p_L+1) by

NZ(p-L) 1>

« N(m-r+1) 1-

, (4.1-15)
(4.1-16)

(4.1-17)

vhere U1, U2, U3, C, N1/, N2’, N3/, N1", N2" and N3" are given by

U1Tef U1y,1 Uly,g

. Uly(d) 4 1
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v2tal V21,7 V25,7 - - . U24(d) 4 ],
U3Tal U3y,3 U3g,1 - - . U3y(d) g I,
Ul g = [ 1ebtj . . e(®L-Dégy T,
U244 = [ 1evij . . e(®Ll-Dry T,
Ug,§ = [ 1evtj . . .e(®L-Dvy T,
C = diag [c11, €315 - « <y cyq(d)g 1y
N1‘=[NKy NE; . . . NXeppy ]
N2'=[NYy NY5 . . . N¥(p 1) 1,
N3'a[NZy N2y . . . NZp 1y 1,

—\

N1"=[NX; NX3 . . . NX(p_L.1) 1

N2"=[NYy NY3 . . . NY¢p 1) 1y
N3"=[NZy NZ3 . . . N2(p_p.1) 1

Assuming the signals and noise to be statistically independent and that the
noise components are uncorrelated from sensor to sensor, we get
E(MyAMJ=U1B vi vl v L o? 1(p gy
E(NyBM J=U1B o vi U1 + L o? Iy(pyy
E(P18p11-U28 v2 U2 + L & Iy, »
E[py80;)-U28 M v2 u2 + L & Iy(p 1) »
E[Ry IRy =038 v3 U3 + L 2 Iy gy
E[S19R 1=U38 ¥ v3 U3 4+ L & Iy(qy)
vhere I(y_r) is the (m-L)x(m-L) identity metrix ard Ij(y_r), V1, V2 and V3

are the matrices

0100 . .0 W
0010. . G
0001. . 0
Il(m_L)S o e .
09000. .1
b00000 '041
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vi-g(cHa,Ba;c),
v2-B{cla,Ha,cy,
vi-B(cHa4HaqC].

Now, let M, N, P, Q, R and S be the matrices

M= E[MM] - Lo Ty =utf Vi, (4.1-18)
N = E(NMy) - Lo Iy =U1F Vi, (4.1-19)
P = E(PP)]) - Lo? Iy = 2B V2 U2, (4.1-20)
Q = E[QP] - Lo? Iy(p gy =U2H T v2 02, (4.1-21)
R = E[RR)] - Lo? Ty 1y = U3R V3 U3, (4.1-22)
S = E[S17Ry] - La? Iy(q.py =038 ¥ V3 u3 . (4.1-23)

Consider. the folloving three pencil matrices (M-MN), (P-nQ) and (R-VS).

Note that
(M- = (U1 v1 un)-auitl o v uny<uificz-adyve vt (4.1-24)
(P-nQ)=(U28 v2 y2)-n(u2d i v2 y2).u2l(z-nriyvz v2 , (4.1-25)
(R-v8)=(U3H v3 u3)-vw(u3tl W v3 y3y.usbcr-vtyvi u3 . (4.1-26)

The matrices Ul, U2, U3, ¢, T, and Y are all of rank M as long as all the
‘ij's are distinct and L2M. Defining

L
Fpq,rs -1zlexp{(1-1)<¢*pq—¢rs)},

L
Gpq,rs -1nlexp{(1-1><v*pq-vrs)1.

L
Hpq,rs -1t1exp{(i—1)<w*pq-wrs)}

and .
Cpq,rs = Elepqers 1y

the matrices V1, V2 and V3 can be written as
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[ C11 11 F11 11 .« Cy11,M(d)n(d) Fyq m(d)y(d) ]
12 11 F12,11 . C12 u(d)n(d) F1z H(d)H(d)
Vla
L Cy(d)n(d) 11 Fy(d)y(d) 11 - - Cy(d)y(d) y(d)y(d) Fy(d)y(d) y(d)y(d) J’
[ Cll 11 G11 11 .« Cy11,M(d)y(d) Gpq M(d)y(d)
12 11 612,11 .- C12 M(d)u(d) G12 M(d)M(d)
V2
L CH(d)H(d),ll Gﬁ(d)ﬂ(d),ll o s CM(d)H(d),M(d)H(d) GH(d)M(d)'H(")H(d) _,
[ C11 11 “11 1 - » Cy1,u(d)y(d) Hyy y(d)y(d)
12 11 B12,11 . C12 T(d)y(d) H12 n(d)n(d)
via| . o
L Cy(d)y(d) 17 Hy(d)y(d) 17 - - Cy(dIy(d) y(d)y(d) Hy(d)y(d) y(d)y(d) I

It is easy to see that the matrices V1, V2 and V3 are of rank M even in the
presence of fully correlated sources. The rank of the pencil (M-)MN) is

decreased by 1 wvhenever

Xij-exp[-¢ij*}-exp[pij*(A/c)sin(ej)], (4.1-27)
for i=1, 2, . . ., M(k),
j'k-l' 2' .« . .y d.

The rank of the pencil (P-nQ) is decreased by 1 whenever
nyy=exp(-vi;*}=exp(psy T} , (4.1-28)
for i=1, 2, . . ., M(K)
Jokel, 2, . . ., d.

The rank of the pencil (R-vS) is decreased by 1 whenever

vijmexp(-viy*)=exp(pyy*(8/c)sin(8y))exp(ps;*T), (4.1-29)
for =1, 2, . . ., M(K),
Jok=1, 2, . . ., d.

Note that the first set of generalized eigenvalues gives us a set of

coupled values of natural frequencies and angles of arrival. The second set
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solves for the natural frequencies. Vith these two sets one might think
that the problem is solved. Howvever, there is some ambiguity in choosing
wvhich natural frequency goes with which angle of arrival. The third set
solves this ambiguity since we can see that the set of these generalized
eigenvalues is the product of the first and the second ;i.e;

V{4 "Xij - Nij- (4.1-30)
Therefore, the ambiguity is removed by constructing a table of all the pro-
ducts of Xij and N, . These products are then compared with the values v¢.
Once a product is matched, that natural frequency is used to determine the
angle of arrival of the source. In practice, due to numerical round off er-
rors, a range of uncertainty remains since the products and the rank reduc-
ing values of the third set do not match exactly.

In the above algorithm, note that knovledge of the number of natu-
ral frequencies is important. If sources have common natural frequencies,
then these frequencies would be counted only once. This means that the to-
tal number of distinct natural frequencies M should be replaced by a

suitably reduced number.

4.1.1 COMPUTER SIMULATION
In this simulation, a linear uniformly spaced array consisting of
12 sensors vas used. Two sources were assumed to be present and located at

angles 01=16° and 6;=24°. Two cases vere studied.

Case 1.
Source | Angle of arrival | Natural frequemcies
1 | 16° | 0.25-30.90 ; 0.25+30.90
2 | 24° | 0.12-30.79 ; 0.12+30.79
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Case 2.
Source | Angle of arrival | Natural frequemcies
1 | 16° | 0.25-30.90 ; 0.25+30.90
2 | 24° | 0.25-30.90 ; 0.25+30.90

The sensor spacing was selected such that 4/¢=n/0.90. The coefficients cjy)
vere assumed to be independent random vairiavles. The additivebnoise vas
generated as white Gaussian with zero mean and unit variance. 100 snapshots
vere considered in each of the 50 runs simulated. The resﬁlts of the angle
estimates are shown in figures 4.3 to 4.8. It is clear from these figures
that the estimates obtained from the second case (assuming 2 common poles)
are much better than case (1). This is mainly due to the fact that the nat-
ural frequencies estimates are less biased in this case. The length of the
vindow is smaller which results in a better noise reduction through the
singular value decomposition (SVD). Tables 4.1 to 4.6 give the poles
estimates with their variances. It is apparent here that due to the fact
that fewver poles had to be estimated in the first case, the estimation pro-

cedure achieved a better performance than in the second case.
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SAMPLE MEAN
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(1)-No Common Poles
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Fig. 4.3. Sample Mean of Angle at 16°
Transient Signals.
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SAMPLE VARIANCE (dB)

ANGLE=16"

T L T T T

L

PR i 4

5 10 15 20 25
SNR (dB)

(1)-No Common Poles
(2)-2 Common Poles

Fig. 4.4. Sample Variance of Angle at 16°
Transient Sipnals.,
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MSE (dB)

ANGLE=16 °

.45 -, A ] 1 1
0 S 10 15 20 25 30

SNR (dB)

(1)-No Common Poles
(2)- 2 Common Poles

Fig. 4.5. Mean-Squared Ervor of Angle at 106°
Transient Signals.
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SAMPLE MEAN
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SAMPLE VARIANCE (dB)
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95

at

21e

25 30




MSE (dB)

ANGLE=24

10

-10

-50
0

T Y —T

5 10 | 20 25 30
SNR (dB)
(1)-No Common Poles
(2)- 2 Common Poles
Fig. 4.8. Mcan-Squared Error of Anglec at 21°

Transient Signals.
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SNR (dB) | Sample Mean | Sample Variance

30 | 0.2500616-30.9001127 | 7.8816270e-4

25 | 0.2501127-30.9002026 | 1.4029399e-3

20 | 0.2502106-j0.9003684 | 2.5036666e-3

15 | 0.2504140-j0.9006952 | 4.5110551e-3

10 | 0.2509581-j0.9014653 | 1.9616835e-2

5 | 0.2519363-30.9021969 | 1.9616835e-2

0 | 0.2310321-30.969u142 | 0.1542990
Table 4.1

Sample Mean and Variarnce of the pole p;;=0.25-30.50.
(No Common poles)

SNR (dB) | Sample Mean | Sample Variance
30 | 0.2499895+j0.8999775 | 8.9807872e-4
25 ]| 0.2499841+3j0.8999586 | 1.6006386e-3
20 | 0.24998234+30.8999237 | 2.6825261e-3
15 | 0.2500210+3j0.8998682 | 5.1696543e-3
10 | 0.2503774+j0.8998694 | 9.6555240e-3
5 | 0.2538730+j0.9004380 | 2.2066321e-2
0 | 0.2310484+30.9300936 | 9.0392388e-2
Table 4.2

Sample Mean and Variance of the pole p;,=0.25.j0.90.
(No Common poles)
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SNR (dB) | Sample Mean | Sample Variance

30 | 0.1198686-30.7899920 | 1.9208038e-4
25 | 0.1197$63-30.7900143 | 3.4073265e-3
20 | 0.1197361-30.7501177 | 6.071778Ce-3
15 | 0.1198721-30.7905209 | 1.1008599e-3
10 | 0.1211890-j0.7921247 | 2.i280421e-2
5 | 0.1356790-30.8039448 | 4.8372950e-2
0 | 0.2179931-30.8058360 | 0.1220230

Sample Mean

Table 4.3

and Variance of the pole py9=0.12-j0.79.

(No Common poles)

SNR (dB) | Sample Mean [ sample Variance

30 | 0.1198654+30.7897864 | 1.6900700e-3
25 | 0.1197749+30.7896364 | 3.0200828e-3
20 | 0.1196503+30.7894068 | 5.4612877e-3
15 | 0.1195874+30.7891387 | 1.0212054e-2
10 | 0.1204553+30.7893061 | 2.0683207e-2
5 | 0.1317147+30.7937539 | 5.0145626e-2
0 | 0.2189744+30.8155535 | 0.1081801

Sample Mean

Table 4.4

and Variance of the pole py=0.12-30.79.

(No Common poles)
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SNR (dB) | Sample Mean | Sample Variance
30 | 0.2500181-j0.8999961 | 1.5507222¢-4
25 | 0.2500326-j0.8999931 | 2.7576982e-4
20 | 0.2500592-j0.8999841 | 4.9048965¢-4
15 | 0.2501090-j0.8999797 | 8.7285927e-4
10 | 0.2502059-30.8999674 | 1.5552028e-3
5 | 0.2504041-30.8999538 | 2.7789618e-3
0 | 0.2508400-j0.8999541 |  4.99830687¢ -3

Sample Mean

lable 4.5
and Variance of the pole pyp=0.25-30.90.

(2 Common poles)

SNR (dB) | Sample Mean | Sample Variance
30 | 0.2500219+30.9000132 | 1.508002%-4
25 | 0.2500393+j0.9000236 | 2.6813077¢-4
20 | 0.2500712+30.9000421 | 4.7654871e-4
15 | 0.2501304+30.9000752 | 8.4674195e-4
10 | 0.25024645+30.9002433 | 1.50189e-3
5 | 0.2504744+430.9002433 | 2.6707526e-}
0 | 0.2509713430.9006447 | 4.7491789% 1

“ample Mean

Table 4.0
and Vaviance of the pole pyp-0.0050.90.

(? Common poles)

99




4.2 VIDE SENSE STATIONARY SIGNALS

Consider the same configuration as in section 4.1. Let m be the
number of wideband sensors in the linear uniformly spaced array and 4 be
the sensor spacing. Assume there are d (d<m) wideband sources located in
the far field so that planar waves arrive at the array. The sources sj(k)
are modeled as the stationary output of a finite dimensional linear system
driven by vhite noise sequences ej(k); l=1, 2, ..., d, and k is a discrete
time index [53,54]). Denote the transfer function of the l-th linear system
as hj(z). Let the spatial array be modeled in terms of the impulse response
of each element in the array. The array response to a unit impulse arriving
at the array from direction 6 will then be represented as the impulse
response of this system. The combination for the l-th source can therefore
be modeled as a single system, aj(z), driven by a wvhite noise source se-
quence (Fig. 4.2). Let g;(k,8}) be the response of the i-th sensor to a
unit impulse coming from direction ©;. The received signal at the i-th

sensor can then be written as

d

xg ()=l gy(k,8)*s1(k) + ny(k); =1, 2, . . ., m (4.2-1)
1-1
d

xg(k)=L gq(k,8))*hy(k)*ey(k) + ny(k); i=1, 2, . . ., m (4.2-2)
1=1

vhere nj(k) is the additive noise assumed to be uncorrelated with the emit-
ter signals and * denote the operation of convolution. Define a;(k,8y) as
a; (D (k,0)) = gj(k,8))*h (k). (4.2.3)
Let A(l)(z) be the z-transform of a(l)(k). Assume this transfer
function to be a rational function vith the degree of the numerator being

less than the degree of the denominator. It can be expressed as
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N R
White Noise Hl(z) » 1-th Source Signal
Sequence h, (k) sl(k)shl(k)'cl(k)
el(k) 1
Fig. 4.2a 1-th emitter source

White Noisc
Sequence—
e, (k)

Hl(z)

Gi(z'nl) i-th scnsor

White noise
sequence

e, (k)

» Output

Fig. 4.2b Output of i-th sensor to a source
coming fron direction Gl

—_—

Ai(z,Ol)
ai(k'Ol)

‘ i-th sensor output

Fig.

Combination of the two systems.
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M(1)
A (z) = £ hy/(1-pyez)) (4.2-4)
r=l
vhere py, is a complex number with magnitude less than 1. Note that these
poles do not belong to hj(k) nor to gy(k,8)). They are hovever, a mixture
of both. Ve will loosely refer to them as poles of the sources. Thus,
a(l)(k) can be written as
N(1)
all)(k) = £ hy, (p1pk. (4.2-5)
r=1
Hovever, ai(l)(k,el) is related to a(l)(k) through
a; (1 (k,0)) = all)[k-(1-1)(8/cTg)sin(8))] (4.2-6)
vhere T, is the sampling period and ¢ is the propagation velocity of the
plane wvaves. Substituting for the expression of a(l)(k), ai(l)(k,el) can

then be written as

n(1)
ai(l)(kvel) _rzlhlr (p1)* (plr)‘(i”l)(A/CTS)Si“(el). (4.2-7)
Let ¢, be
N, - (plr)—(A/CTs)Sin(el). (4.2-8)

a4(k,8;) can then be revritten as

M(ly
ay(k,6) -rzlhlr (p1o)k (4 -1, (4.2-9)

Assuming an N point sequence, the received signal at the i-th sensor can be

expressed as
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d M)
x4 (k) = zl L hy (41 (pro)k * eg(k) + ny(k) (4.2-10)
- I's=s

1-1’ 2, ¢« o ey m
k=0, 1, . . ., (N-1)

Let X{(n) be the discrete Fourier transform of xj(k). This is given as

N-1
Xy(n) = I x;(k) e-3(2n/N)nk, (4.2-11)
N-1 (d MDD
Xy(n) = I { £ I hy ()Y (prpk * eq(k) } e-J(2nr/N)nk
ka0 | 1=l ral
(4.2-12)

N-1
+ L ng(k) e-3(2/N)nk,
k=0

i=l, 2, . . ., m

n«0, 1, . . ., (N-1)

Let DFT{.) denote the discrete Fourier transform operator. Then, by defini-
tion,
N-1
Hyp(n) = hyp E (pyp)k e-3(ZWMInk L h)  DFT{(py,)*),
S1(n) = DFT({ej(k)},
Ngy(n) = DFT{nj(k)}.

It followvs that

a M)
Xj(n) = I I Hy(n) ()1 s9(n) + Ny(n) (4.2-13)
-1 Cm
1-1, 2, e+ ey M
ne0, 1, . . ., (N-1).

Given this set of data, the objective is to solve for the angles of arrival

of the sources. It can be shown that the rank reducing values of the matrix
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pencil generated from this data are functions of both the angles of arrival
and the poles of the sources. However, the poles of the sources are assumed
to be unknown at the receiver. Thus, these poles have first to be estimated
and then be used to solve for the angles of arrival. That is the reason why
the same configuration as in section 4.1 can be used to solve this problem.
Therefore, the first sensor is folloved by an equally spaced tapped delay
line consisting of m taps with successive delays of T seconds. In addition
the received signal at the i-th sensor is delayed by an amount of(i-1)T;
i=2, 3, . . ., m (Fig. 4.1). The signal at the output of the h-th delay

followving the first sensor is

Yh(k)=xq(k-(h-1)T)

d )
-11:1 zlhlr (15K (p1)~(M-DT » €3 (k-(h-1)T) + ny(k-(h-1)T)  (4.2-14)
- Lm
a M) '
-11:1 xlhlr (15X (v ) (A1) « ey (k-(h-1)T) + ny(k-(h-1)T) (4.2-15)
= | of ]
vhere

Yik = Pl (4.2-16)
The signal at the output of the delay connected to the i-th sensor can be

expressed as

2g(k)exg(k-(s-1)T)

d M(k)

-121 Elhlr(plr)k (1 )Y * eg(k-(s-1)T) + ng(k-(s-1)T) (4.2-17)
- | ]

Let

V1= (1) (v1e)- (4.2-18)

It can be shown that the discrete Fourier transforms Yj(n) and Zg(n) of
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Yh(k) and zg(k) are respectively

d M)
Yp(n) = I L EHy(n) (vip)P-1D) s17(n) + Ny (n)
lal ral
hel, 2, . .
n-O, 1, « .
da M)
Zg(n) = I I Hp(n) (¢ v1p) 57D sym(n) + Np"(m)
l=1 ral
s=1, 2, . . .
n-O, 1, P

(4.2-19)

(N-1)

(4.2-20)

m
(N-1)

Assuming that the sources do not share any common pole, let M be

M= M1,
1=1

(4.2-18)

As in section 4.1, given M, ve form (m-L+1) vectors X,, (m-L+1) vectors Y,

and (m-L+1) vectors Z, of length L where

and

Xv(“) = [xv(n)o xv+1(n), .« .
Xv(“) - [yV(n)v yV+1(n)' .« .
Zv(") - (zv(n)y zv+1(“)’ .« .

It can be shown that X,, Y, and Z, can be decomposed into

vhere Al,

M <L < (m-M)

Xy(n) = Al H(n) #(V-1) s(n) « NX,(n),

¥,(n) = A2 B(n) T(V-1) s7(n) + NY (n),

Zy(n) = A3 B(n) Y(V-1) s7(n) & NZ,(n),

A2, A3, &, T, V¥, C, NX,, NY,, NZ, are given by
Al=[ Alj g Alp g . . . Aly(d) 4 ),

A2«[ A2y 1 A27 q . . - A24(d) 4 ],

Ad=[ A3;,1 A35y . . - Ady(d) 4 ],
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vr Yyapo1(m 1T, val, 2, ..

.y zv+L_1(n) ]Ta V-l, 2’ ¢ o

«y (m-L+1)
.y (m=L+1)

oy (m-L+1).

(4.1-19)
(4.1-20)

(4.1-21)




éli,j =[1 ‘ij . .

- (943

1T,

A2y 5 =0 1vgy. .. (Yij)L'l 1T,

ééi,j = [ 1 wij .« .
H(n)adiag( Hl,l(n) Hl'z(n) . .

d=diag{ #; . - .
T=diag{ Y11 . .
Yadiag{ %1 - . .
s(n) = [Sy(n) . .

$(n) = [S3'(n) . .

S"(n) = [Sy"(n) . .

Nxj(n), Ny;(n) and Nz4(n) are introduced here forvsimplicity of notation.

Ezv(n)'[Nxv(n)o NXV*I(n), .
NY, (n)=[Ny,(n), Ny, i(n), . .

§§v(n)-[sz(n), Nzy,, 1(n), . .

They are given by

and

in(n) = Ni(n),

Nyg(n) = DFT{n(k-(i-1)T))

-(Wij)L'l 1T,

. By y(d)},
u(d)),
< vgu(d)},
van(d)},
. S3(n). . . Sg(n) . . . sq(m) 1T,
. S1°(n). . . S4'(n) . .
. $1"(R). . . S4"(n) . .

y Nxy 1 1(n) 1,
oy Nyyip-2(n) ],

Nz (n) = DFT{n4(k-(i-1)T)}.

Six matrices My, Ni, Py, Qy, Ry and Sy are formed where

Hl(n) =

[ 1 t
| I
() . . . X(p-L)(n)
| |
L 4 + d
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’ Nl(n) - gz(n) . .
| |
| ¢ 4

. Sq'(m) T,

. Sq"(n) |7,

- X(m-L+1)(M)




1 T + 0
| I I I
Pi(n) = | Y3(n) . . . Y(uop)(n) | 5 Qu(n) = | Ya(n) . . . Y(p_p,1)(n)
l | | I
L 4 J L + d
K T [ +
I | | |
Ri(n) = | 29(n) . . . Z(qp)(n) | 5 S1(n) = | Zo(n) . . . Z(p_r.1)(n)
I I i I
3 ¢ ] L 4 v

These matrices have the following decompositions

Mj(n)=A1l H(n) S(n) Ul(n)+N1’

(n) ; Njp(n)=Al H(n) ¢ Ul(n)+N1"(n), (4.2-22)

P1{u)=A2 H(n) S’(n) U2(n)+N2’'(n) ; Qq(n)=A2 H(n) T U2(n)+N2"(n), (4.2-23)

Ry(n)=A3 H(n) S"(n) U3(n)+N3’(n) ; S;(n)=A3 H(n) Y U3(n)+N3"(n), (4.2-24)

vhere U1, U2, U3, S(n), S'(n), S'(n), N1’(n), N2’(n), N3’(n), N1"(n),

N2"(n) and N3"(n) are given by

U1ta[ U1y 4 Uy, - -
u2Taf u2y,3 U2y,5 - -
usTaf U3y, U34,7 - -
Ulj,y = [ 1 955 - .
U2g,3.= [ 1 vy -

U_3.i,j-[1¢ij..

- Ulg n(d) 1y

- U24 m(d) 1,

. U3q, q(d) 1,
(¢i3)(m-L+1) T,
(vij)(@-L+1) T,
(vij)(m-L+1) T,

S(n) = diag{ S13(n) Spa(n) . . . Sgy(d)(n) },

S’(n) = diag{ Sy1'(n)

S"(n) = diag{ 811"(n)

Nl'(n)-[gxl(n) EXZ(n) . e
N2’ (n)=[NY{(n) NYy(n) . .
N3'(n)-[§zl(n) NZs(n) . .

Nl"(n)-[gxz(n) §X3(n) . .

S12/(n) . . . Sgu(d)'(n) },
S12"(n) . . . Sgu(d)"(n) },
- NX(p_py(n) 1,
. NY(qp_r)(n) 1,
« N2ep_1y(m) 1,

- NX¢p_L+1)(n) 1,
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N2"(n)=[NY(n) NY3(n) . . . NY(p p,.1y(n) I,
N3"(n)=[N23(n) NZ3(n) . . . NZ(p_p,1)(n) ].
Assuming the signals and noise to be statistically independent and that the
noise components are uncorrelated from sensor to sensor, we get
N-1
E(M{B(n)My(n)] = (1/N) £ MyB(n)My(n) (4.2-25)
n=0
EMyB(n)My(n)]=u1B v1i vl + LN & I(qyy

E(N{H(n)My(n)]=U18 B v1 U1 + L N &2 I1(n-L)

E[PIB(H)Pl(n)]suzﬂ V2 U2 + ﬁ N 62 I(m-L) ’

E[(P1H(n)0y(n)]=U28 M v2 U2 + L N &2 I (n-L)

-

E[RA(mRy(m))=038 V3 U3 + LN & I(qy)

Bl Ry (1038 ¥ V3 03 4 LN & Iy

-

vhere I(p 1) is the (m-L)x(m-L) identity matrix and Ij(n_1), V1, V2 and V3

are the matriées

0100 . . 07
0010. . 0
0001. . 0
Il(m-L) = .« . . .
0000. .1
0000 . .0,

Mi1(n)=A1 H(n) S(n) Ul(n)+N1’(n)
v1-[sB(n)BR(n))a;B(n)a; (M)B(n)S(N)],
v2-Els'“<n>a“(n))Alﬂ(n)al(n)ﬂ<h)s'<n)1,
v1=E[s"H(n)EB(n))A;B(n)A;(n)H(R)S"(n)].

Nowv, let M, N, P, Q, R and S be the matrices

M= E[MM) - Lo 1y -u1B V1L, (4.2-26)
N = E[NyBMg) - Lo? Ty(q ) =U1F V101, (4.2-27)
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P = E[PyHP)] - Lo? I(p 1) = V2B V202, (4.2-28)
Q = E[Q;8Py] - Le? Iyqp gy =U2B fH V202, (4.2-29)
R = E[RARy] - Le? Iy py = U3B V3 U3, (4.2-30)
S = E[S18Ry] - Lo? Ijqp_py =U3H ¥ v3y3 . (4.2-31)

Consider the following three pencil matrices (M-MN), (P-nQ) and (R-VS).

Note that
M-XN)=(U1E v1 u)-x(u1B ¢ v1 uny=u1B(z-aéfyvi vl , (4.2-32)
(P-nQ)=(U28 v2 u2)-n(u2B rf v2 v2)=v28cT-nriyv2 u2 , (4.2-33
(R-vS)=(U38 v3 U3)-v(u3l ¥ v3 U3)=u3b(1-v¥l)v3 u3 . (4.2-34)

The matrices Ul, U2, U3. %, T, and Y are all of rank M as long as all the

’ij's, the vjy's, the yy4's are distinct and L2M. Defining

qu, rs =i21( ¢*pq"¢rs)(i—1)} ?

k3 i -
qu’rs lizl(Y pq‘Yrs)(l 1)}!
Lo, 1
Cpq,rs ’121(w pa-vrs) 1))

CIPq,rs = Els;&“)srs(")lagén)ﬂrs(n),
C2pq,rs = EIS'p4n)S’ ps(n) 1H gn)E g(n),
C2pq,rs = E[S";&n)S"rs(n) ]H;&n)ars(n),

the matrices V1, V2 and V3 can be written as

Cl11,11E11,11 « « Clyg y(d)y(d)Eqg M(d)y(d)
Cl12,11B12,11 .+ Clyp n(d)y(d)Eqp M(d)y(d)

Via

Cly(dIn(d), 11Ew(dy(d) 11 + - Cly(dy(d), y(d)y(dEy(dIy(d) y(dIy(d)
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[ C211,11F11,11 .« €211 M(d)u(d)Fyq, y(d)y(d) )
z12 11712, 11 . C212 n(d)u(d)Flz u(d)n(d)

Vi=
| C2(d)n(d), 11Fu(D(d) 17 - - C2y(dy(d), y(dy(d)Fy(Iy(d) y(dIy(d) |

[ €311, 11G11 11 -« Clyy M(d)y(d)Gyq y(d)y(d)
312 11612,11 .- . C312 n(d)u(d)Glz n(d)n(d)

V3=

! é3y(d)n(d),11Gu(d)n(d),11 « « C3y(d)y(d) y(d)y(d)Gy(d)y(d) y(d)y(d) |

It can be seen that the matrices V1, V2 and V3 are of rank M. The rank of

the pencil (M-AN) is decreased by 1 whenever

M y=1/(4g3")=(pyy*) (W eTs)sin(8y), (4.2.35)
for i=1, 2, . . ., M(1),
jok=l, 2, . . ., d.

The rank of the pencil (P-nQ) is decreased by 1 vhenever
Ngy=1/CrigH=py 3T, (4.2.36)
for i1, 2, . . ., M(1),
jok=1, 2, . . ., d.

The rank of the pencil (R-vS) is decreased by 1 whenever

vijnl/(wqj*)-(pij*)(A/CTs)sin(ej) (pij*)T, (46.2-37)
for i=1, 2, . . ., M(1),
j, k=1, 2, . . ., d.

As was noted in section 4.1, from the first set of generalized eigenvalues,
wve obtain a set of coupled values of poles and angles of arrival. The sec-
ond set solves for the poles. The third set allows us to identify which
poles go with vhich angles of arrival since

Vij = xij - Nij- (4.2-38)
This way, we have successfully solved for the angles of arrival and the

poles of the sources using a model of vide sense stationary signals.
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4.2.1 COMPUTER SIMULATION

The scenario used for this simulation consisted of 12 sensors
uniformly spaced at a distance A. Again, the 2 sources were assimed to be
located at angles 6y=16° and 69=24°. Two cases were studied.

Case A

In this case, the emitter signals are assumed to have been genera-
ted by passing sequences of white noise through linear systems with impulse
response given by hl(k)-(pu)k+(p12)k for one source where p;y1=0.12+30.79
and 912'911*' and h2(k)-(p21)k+(p22)k for the other source with
P21=0.25+30.90 and p22-p21*. Again, the received data wvas first Fourier
decomposed using 128 snapshots and the statistics vere derived using 50

runs.

Case B

In this case, the two sources are assumed to have identical spec-
tra. The emitter signals are gernerated by passing two independent white
Gaussian noise sequences through a linear system whose impulse response is
given by

h(k)=(p11)K+(p1p)¥
vhere py1=0.12+30.79 and 912'911*' The received data was first Fourier
decomposed using 128 snapshots and the algorithm vas runs 50 times.

The results are plotted in figures 4.8 to 4.14 and tables 4.7 to
4.12. In these plots, (1) denotes the estimates for Case A whereas (2) cor-
responds to Case B. Both methods identify the poles of the sources with
their angles of airival, however, tne second method gives better esimates
due to the fact that the poles are estimated more efficiently. Ve have used
the smallest vindow possible which is L=2 is this case wheras a vindow of

length Le4 was used in the first case.
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SNR (dB) | Sample Mean | Sample Variance
30 | 0.2499700-30.8999654 | 6.5221090e-4
25 | 0.2499475-30.8997493 | 1.1575040e-3
20 | 0.2498654-j0.8989769 | 2.0493467e-3
15 | 0.2496969-30.8965538 | 3.6088992e-3
10 | 0.2471662-j0.8881544 | 1.0184543e-2
5 | 0.1563175-30.8014570 | 5.5371519e-2

Sample Mean

Table 4.7
and Variance of the pole pj9=0.25-30.90.
(No Common poles)

SNR (dB) | Sample Mean | Sample Variance
30 | 0.2500927+30.8998703 | 5.1895110e-4
25 | 0.2501507+30.8995793 | 1.0371592e-3
20 | 0.2502299+30.8986719 | 1.8526319e-3
15 | 0.2503528+3j0.8959982 | 3.3094636e-3
10 | 0.2429177.j0.8831745 | 1.9341080e-2
5 | 0.1579504+3j0.8077933 | 5.6961089e-2

Sample Mean

Table 4.8
and Variance of the pole p91=0.25+30.90.
(No Common poles)
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SNR (dB) |

Sample Mean

| Sample Variance

30 | 0.1200390-j0.7898036 | 4.9322803e-4
25 | 0.1200731-j0.7895529 | 8.7595923e-4
20 | 0.1201505-j0.7889045 | 1.5568603e-3
15 | 0.1204159-j0.7871953 | 2.7756214e-3
10 | 0.1218340-j0.7832218 | 4.9832738e-3
5 | 0.1287750-j0.7795519 | 8.9591751e-3

Sample Mean

Table 4.9

and Variance of the pole p12—0 12-30.79.

(No Common poles)

SNR (dB) | Sample Mean | sample Variance
30 | 0.1199508+j0.7900655 | 4.9638440e-4
4 ] 0.1199184+30.7900197 | 8.8051870e-4
20 | 0.1198816+3j0.7897383 | 1.5633145e-3
15 |} 0.1199524+30.7886938 | 2.7888690e-3
10 | 0.1210258+j0.7859387 | 5.0294539%e-3
5 | 0.1271952430.7843727 | 8.9402702e-3

Sample Mean

Table 4.10

and Variance of the pole p;=0.12+j0.79.

(No Common poles)
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SNR (dB) |

Sample Mean | Sample Variance

30 |

.1200018-30.7899857 | 1.0762867e-4

25 |

.1200033-j0.7899747 | 1.9138129%e-4

20 |

.1200061-30.7899654 | 3.4014991e-4

15 |

.1200114-j0.7899263 | 6.0441019e-4

oOjojlo]o] oo

10 |

.1200223-3j0.7898808 | 1.0735721e-3

5 |o.

1200452-30.7898291 | 1.9071890e-3

Sample Mean and

Table 4.11
Variance of the pole pjjy=p39=0.12-30.79.
(2 Common poles)

SNR (dB) |

Sample Mean | Sample Variance

0 |

.1199916+j0.7900093 | 1.3058618e-4

25 |

.1199852+j0.7900167 | 2.3202586e-4

20 |

.1199739+30.7900308 | 4.1216239%-4

15 |

.1199542+4j0.7900584 | 7.314938le-4

o|lolo]J]O}) O

10 |

.1199203+j0.7901148 | 1.2967319e-3

.1198631+3j0.7902434 | 2.2957609e-3

Sample Mean and

Table 4.12
Variance of the pole py1=py1=0.12+j0.79.
(2 Common poles)
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4.3 FOURIER APPROACH
Conéider the problem of estimating the angles of arrival of

videband signals. The notion of Fourier coefficients is used here in con-
junction with the matrix pencil approach. Assume that all incoming signals
have approximately the same bandwidth B. Let T be an observation interval
and denote by wy, and wy, the lowest and highest frequencies contained in B.
In practice the frequency content is determined by Fourier decomposition of
the received signals. The received signal at the i-th sensor can be modeled
as

d
xi(t)-t a(ek) Sk(t—fik) +ni(t); i=1,2,. . .,m, (4.3-1)
k=1

vhere Ty is
Tie=(1-1)(a/c)sin(8y).

Define the Fourier coefficients as
/2
Xj(a)= (D% | xy(t)exp(-juort) dt , (4.3-2)
-T/2

vhere R is the number of subbands, Aw=(wg+wy)/R=width of each subband,
wy=(2n/T)(ry+r), ry is a suitably chosen integer such that
(2r/T)rq=(oy +0w/2) and (20/T)(r{+R)=(ag-8w/2).

Taking the Fourier coefficients of both sides of equation (4.3-1),

ve get

d
Xj(ap) = L a(8)Sp(w)ed (1-12e(er) o N (w);ia1,2,. . .ym,  (4.3-3)
k=1 r=1,2,. . .,R

vhere

121




() =-(w) (8/c)sin(§). (4.3-4)
Given this set of Fourier coefficients, (m-L+1) vectors X,(w ) of length L
are formed vhere
d <L £ (m-d),
Xn(op)=[Za(0p) Xp,p(op) -+« Xpopo1(ep))T 5 n=l, 2,000, (m-Lel).
r=1, 2, . . ., R
It can be shown that X,(w.) can be put in the form
X (wp)=ACwy) #0-1) (@ )BS (wp ) +Np (wp) (4.3-5)

vhere

1 1 S |
eIt (op) eI #2(9r) ... eitaep)

A(O)r) =

| e (L-1)é1(op) oI (L-1)og(ap) | | | eI(L-1)ég(wy) |

ay = a(6J,
B = diag {aj a3 . . .aq },
#(w) = diag { eIt1(or) eItaler) | | eita(wp) 3,
S(wr) = [Sy(wp) Sa(ay) . - . Sg(ap) ]
and
NpT(or) = [NpCep) - . . Npgpg(ep)l.
Non singular transformation matrices T,(w,.) of dimension (LxL) are then
used in such a vay that
T (o )ACay) #(0=1) (o )=A (ug) (7D (ap) , (4.3-6)
vhere uy is a conveniently chosen frequency. In this fashion all the pover

in the corresponding sub bands is "moved" to a single band. This process is
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iterwed in the literature as focusing. It is desirable to solve equation
(4.3-6) for T (w.). Howvever, A(mr)b(“‘l)(wr) is of dimension (Lxd) and,
therefore, does not possess an inverse. Without loss of generality, it is
possible to augment A(wt)O(n‘l)(wr) by a matrix W(w.) of dimension
(Lx(L-d)) so as to generate the non singular square (LxL) matrix
[ACwp) #(=1) (op) W(ay) ).
At uwy, this matrix becomes
[ACap) #(7=1) (wp) V(ap)].
An equivalent equation for equation (4.3-6) is then given by
Tp(or) [ACe) #0=1) (ar) Wwp) 1=[aCag) #(7-1) (up) V(ap)].
It follovws that
Tn(wr)=[ACap) #("~1) (ag) V() 11AaCar) #0-1) () W(ep) -t

Let By, By, - . ., By be preliminary estimates of the angles of arrival 6,
69, . . ., 6y obtained by some simple lov resolution technique such as the
periodogram. Define

e (wp)=-(wr) (&/c)sin(B) .
A(w,) is then approximated by the matrix
1 R N
exp{jéy(wp)} « « . exp{jeg(uy))
Aglag)= . e e

| exp(3(L-1)81(6p)) - - . exp(3(L-1)d4(0))

AB(wo) is obtained from AB(“r) by replacing w, with wy. The desired trans-
formations are then given approximately by

Tp(wp)=[Ag(up) #g(""1) (ap) V(ap)J[Aglwp) #g(P-1) (wp) V(wp) )t .
To prevent matrices from being singular, W is chosen to have the same form

as A but is evaluated at distinct angles different from B8y, 87, . . ., B4.
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If it happens that all the true angles of arrival are within the neighbor-

hood of a single angle B, the approximate transformation matrices are

diagonal and are of the form

Tn(mr)-e‘j(“‘1)(“0‘“r)(A/C)5in(B) Tq ()

vhere

Ty (wp)=diag{ 1 e~3(wp-wr)(&/c)sin(B)

Applying these transformation to every vector, we obtain

. e-J(L-2)(uwg-w)(&/c)sin(B)y,

Tn(wp)Xn(wy) = To(wp)ACw) #0-1) (w )BS(w) + Tp(wp )Ny ()

= ACup) #(7=1) (ay)BS(wy) + Tp(wp )Ny (wp).

With respect to the R sub-bands, consider

R
X (ag) = (1/R) £1Tn(@r)§n(wr)-
I'=

Let §’ and N/ be

R

S’ = (1/R) I S(w) =[S’ S'2 . . . §'q 1T,

r=1

R

N; = (1/R) T T(@)Np(wp)=(’p N p,y - -

r=1

Therefore, X,(wp) can be expressed as

X (o) =A (o) #(7=1) () BS” 4Ny,

LN PYTS; | ]T'

(4.3-7)

(4.3-8)

(4.3-9)

(4.3-10)

(4.3-11)

In the remainder of this discussion the dependence on w;) is assumed. The

tvo matrices My and Ny are then formed vhere

+ ot t W t 1t
|| | | |
Mp =1 X1 X X(m-L) | Ny = [ X2 X
| | l [
Rt $ L1 4
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These can be

[+ +
|
My = | ABS’ AB#S’ . . .
|
$ $
[+ +
I I
Ny = | AB#S’ AB#S’
I I
[ 3 3
vhere
[+ 1
||
N = | Ny Ny
||
[ 3 3
[+ 1
|
"
N. §21§3'
|
[+ 3

decomposed as

« Nm-L+1)'

. . ap#(m-L)ss |, Nm

Simplification of M; and Ny results in

Hl = A.B[§’ ’§’ . e o

N, = AB#[S’ #§' . .

Let F be the

matrix

11
I

(1%,]
4
(7]

LA
- —
-

.(m-L-1)§,] + N',

. ’(m-L'l)S'] + N"..
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(4.3-13)




The matrix F can be wvritten as

P - D U,
vhere
D = diagf 5'1 S'9 « . . S’d I
1eitn . . | ed(m-L-1)#y
1 el% ... JmL-1)
U =
1 3% . . . ei(m-L-1)4g
Then ,
My = ABDU4N (4.3-14)
and "
Ny = ABD#U.N". (4.3-15)

Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor, ve get
E[M;BM;]1=UBVU + E[N/BN/) (4.3-16)
E[NyBN, ]=UB#lvy + B[N’ /BN7) (4.3-17)

wvhere V is the matrix V-E[DBBHAHABD]. Defining

L
F - z ej(i"l)(¢p‘¢q)’

Pq = =
*
Spq = ElSqSp Iy
a*
3pq = 3qSp’
the matrix V becomes
[ S11811F11 - . - - S41241Fq1 ]
S12a12F12 -+« -+ S4q2a47Fq)
V =
L S14214F14 -« + + Sqqa4qF4q J-

Note that the matrix V is of rank d even in the presence of fully corre-
lated sources. Define the matrices M and N as

M = E[(MBM )-E[N'EN'] 2 uB vy (4.3-18)
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and

N = B[Ny ]-E(N/ N/ o gl oy g, (4.3-19)
The matrix pencil then becomes

M-WaUHvu- B ivyaucr-aetyvu (4.3-20)
wvhich satisfies the requirements of the pencil theorem. Hence, the values
of A\ for which the rank of M-AN decreases by 1 are given by

N = eI kel,2,...,d. (4.3-21)
The angles of arrival are given by

& = sin“l(jeln(Og)/b); k=1,2,...,d. (4.3-22)

4.3.1 SIMULATION 3
Several possibilities exist for choosing the transformation
matrices T, [58]. It can be shown that a diagonal transformation leads to
the simplest analysis. Assuming the sources to be clustered within the
proximity of one location 8, the transformation matrices Th(w,) then become
Tp(ay)=e~3(N-1)(@g-ap) (8/c)sin(B) 1, (4 )
vhere
Ty(oy)=diag{ 1 e-J(0p-a)(&/c)sin(B) = | o-3(L-1)(ap-w)(8/c)sin(B)y
Vith this transformation it follows that
Tn(op) A ) 8D (a) o ACuy) #0-D (ay).
Assuming that the noise components are uncorrelated from sensor to sensor
and from sub-band to sub-band vith zero mean and variance o¢ . it can be
shown that
EINHN'] « R &2 I(q_1)d
EINHNr ) o R o2 Tl )

vhere I(m—L) is the (m-L)x(m-L) identity matrix and Il(m-L) is the matrix




(0100 « 0]
0010 .. 0
0001 . 0
Il(ﬂ-l) = . .
0000 . 1
L0000 . . 0 |

In the simulations, we hive considered a linear array consisting
of 8 sensors uniformly spaced at a distance 8=c/(2 f3) . Following the ex-
ample in [57], the two sources were assumed to be located at 16° and 24°
and to have ideal rectangular spectra of bandwidth B=40 Hz centered at
fo=100 Hz. The broadband signals were first decomposed into 33 narrowvband
components. 100 snapshots vere taken for each of the 50 runs. As in chapter
3, ESPRIT can be used either with overlapping subarrays or non overlapping
subarrays. In the first case, the subarray X consists of the first 7
scnsors and the subarray Y consists of the last 7 sensors. In the second
case, two adjacent sensors weire considered as a pair. The results of the
simulation are plotted in figures 4.15 to 4.20. In these figures, the
Moving Window is represented by (1), ESPRIT overlapping case by (2) and
ESPRIT non overlapping case by (3). (4) represents the Cramer-Rao lower
bound (CRLB) which is described in the appendix.

Note that the estimates obtained through moving vindow have small
bias and their variances approach the CRLB very closely especially at high
SNR. Ve have thus shown that the moving window can be applied in conjunc-

tion with CSS and that it performs slightly better than ESPRIT.
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Fourier Approach.
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Fig. 4.17. Mean-Squared Error of Angle at 16°
Fourier Approach.
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Fourier Approach.
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Fig. 4.19. Sample Variance of Angle at 24°
Fourler Approach.
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MEAN-SQUARED ERROR (dB)
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Fig. 4.20. Mean-Squared Error of Angle at 24°
Fourier Approach.
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CHAPTER 5
PERTURBATION ANALYSIS

The methods described previously assume that additive noise can be
suppressed through noise compensation. Also, the uniform spacing between
the sensor elements of an array is assumed to be known. In practice, how-
ever, it is likely that the noise compensation will be non ideal and that
the sensor elements vill be perturbed from their uniform spacing. In this
section, performance degradation is investigated due to imperfect compensa-
tion of the additive noise. The case of offsets in the sensor spacing is
studied in a similar fashion. The chordal metric [85] is introduced as a
measure of the distance betveen the true and perturbed eigenvalues.
Theoretical upper bounds are derived for the chordal metric for both the
Moving Windowv and ESPRIT.

5.1 Chordal Metric

Let C denote the field of all complex numbers. Consider the eigen-

value problems

Mx=XANX (5.1-1)
and

zﬂ M=) za N (5.1-2)
vhere H denotes complex conjugate transpose. x and y are called the right
and left eigenvector, respectively, of the pencil formed by M and N. Solu-~
tion for y proceeds by solving

MEy - a* Ny |
Introduce the Euclidian matrix norm defined as

[IM]] = sup |IMx!] = sup(xB(uBM)x}*.
[x]]=1 [x]]=1
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Ve are interested in the generalized eigenvalue problem

Mx=ANX (5.1-3)
vhere
MaM+8=M+E (5.1-4)
Na=N+&N=N+F. (5.1-5)

Let oy and By be the quantity
oy = y3"Mxy (5:1-6)
and

By = yi"Nxy, (5.1-7)
vhere x; and y; are the i-th right and the i-th left eigenvectors of the

pencil formed by ¥ and N. It follows from equation (5.1-1) that
Xi - ui/ﬁi. (5'1'8)

Stevart [85] shoved that small perturbations in M and N result in

“i"XiHE’_‘i*o(tz) G1'+0(t2)

- = (5.1-9)
By+y 1 OFx;+0(s2)  By’+0(e?)
vhere
o(€?)
li- = Oo
€0 €
Define the chordal metric as
. [ M=%y |
X(M1Ay) = . (5.1-10)
NIV RE PWTWE
Vith this definition it was shown [85) that
XML A) € /vg + 0(e2) (5.1-11)
vhere
¢ =1 ||E]|2 + |IF|)2 (5.1-12)
and
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Yy = a.iz + 512 . (5.1-13)

In our applications, the eigenvalue Ay is related to the angle of
arrival 6; through the equation
Aj= exp{j(wd/c)sin(8y)]}.
The perturbed eigenvalue Xi then corresponds to an angle of arrival éi
given by
A\j= exp{j(wd/c)sin(8y)}.
Let ¢j=(wld/c)sin(6;) and ;i-(uA/c)sin(éi). It can be shown that
| M-X | = 2 sin{(;-91)/2}. (5.1-14)
Note that ||\{||=1 and ||X{||=1. Therefore, equation (5.1.10) reduces to
XA A{) = sin{(#5-91)/2}. (5.1-15)
vhich implies that
8;=sin~1{sin(8y) &+ (2c/wb)sin=3{X(A{,25)1}. (5.1-16)
Hence, given the value of the chordal metric, it is possible -0 determine
the perturbed angle of arrival by using equation (5.1-16).
5.2 PERTUBATION DUE TO NOISE
In this section ve study the effects of non ideal noise compensa-
tion on the performance of the Matrix Pencil Approach. To compensate for
the noise, it vas shown in chapter 2 that it is necessary to knov the noise
covariance matrix. Hovever, in pactice, the noise covariance matrix is not
knovn exactly. To obtain a neasure of the perturbation in the eigenvalues,
upper bounds are derived for both the moving vindov and ESPRIT operators.
5.2.1 MOVING VINDOV
For the Moving Vindowv operator discussed in chapter 2, tvo
matrices BIHIHHIJ and E[N;BN;] are formed vhere

(M BMy)=UBVU + Lo? I (g1, (5.2.1-1)

»
Lo
~




(NP 1-088Bvy & Lo 1y g (5.2.1-2)
vhere U, V and UH are (m-L)x(m-L) non-singular matrices and I(m-L) is the

(m-L)x(m-L) identity matrix and Il(m-L) is the (m-L)x(m-1) matrix

0100....017
0010....0
0001 . .0
II(B-L) = e s e .
0000 L1
{0000 . 0]
Let
M = B[MyHN]
N = B[N;HN]
M=UBvy
B-Ld‘z I(II-L)
N=UH #Byy

Falo? Ij(q_L)-
As a vorst case, assume noise correction is no: attempted. Thus,

MNaM+O4=N+E (5.2.1-4)

- 1]

=N+ ON =N+ F. (5.2.1.5)

In order to use the bound on the chordal metric, one needs to evaluvate the

euclidean norms of the matrices E and F. for this purpose, consider
llex]|? - (ex)Bcex))- xB(efE)x

Maximizing ||Bx|| is the same as maximizing the quadratic form xB(EfE)x.

Given a Hermitian matrix M, it is known that the maximum value of the quo-

tient,

is equal to the largest eigenvalue of M. Therefore, under the constraint
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§35.1, the maximum value of §H(EHE)§ is equal to the maximum eigenvalue of
EHE. Since B= Lo? I(n-L) , then EHE . L2 ot I(n—L)' The largest eigenvalue
of this matrix is L2 o%. Hence,

||E||L 2. (5.2.1-6)

Similarly, because F=Lo? Il(m-L)’ FHP is the folloving matrix

"0 0 . 00
01 . 00
FBp . L2 o4 R
00...10].
| 00...01 |

The largest eigenvalue of this matrix is also L2 ¢*. Thus
[|F]|=L o2. (5.2.1-7)

Therefore,

€ =1 ]2 + ||p||2‘ w2z . (5.2.1-8)

For €30 ; i.e, 02<<(1/L(2)*), the bound on the chordal metric then becomes

2

- 2
X(A{,2)€ L o2 (5.2.1-9)
((z3Mx)2+(y48Nx3)2)

5.2.2 BSPRIT

ESPRIT can be employed in a variety of situations. The general
case involves isolated doublets located randomly in the plane. Hovever,
vhen a linear uniformly spaced array is used, tvo schemes are possible
depending upon vhether the doublets overlap or not. For a given number of
sensor elements, the overlapping case has the advantage of having a larger

aperture size and thus a better resolution.
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5.2.2.1 General Case
For the general case of ESPRIT presented in chapter 2, two
matrices vere formed from the data vectors X and Y such that
E(X XBl=ay58y8 4 2 I (5.2.2.1-1)

E[X YH)=a,58Ha,8 | (5.2.2.1-2)

xt

- E[X Xf)

4]

- E[X 1)
M=AySA{H
E=o? I,
N=A,S#ia,H
F=0.
Thus, assuming noise correction is not attempted,
M =M+ OM=Ha+E
N=N+oNa=N-G+F.
Ve knov that ||E|| and ||F|| are equal to the square root of the largest

eigenvalue of EBE and FHF, respectively. Since E= o2 I, and F=0, EBE=a“Im

and FBP=0. The largest eigenvalue of these matrices are ¢* and 0. There-

fore,
[[B][= o? (5.2.2.1-3)
|iF]]|= 0. (5.2.2.1-4)
Thus,
=t |[E]|2 + |IF]|2 = o2 . (5.2.2.1-5)

For ¢ » 0, the bound on the chordal metric becomes
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o2

XCA A )€ : (5.2.2.1-6

12(21“"51)2*(213N§1)2)

5.2.2.2 Linear Array: Overlapping Doublets Case

In this case a linear array composed of m sensors is used.

signal received at the i-th sensor can be modeled as

d ‘
vi(t,8)= L apsp(t) eI D o nyqey 51a1, 2, . . .om, (5.
k=1
vhere
#e=(wb/c)sin(6y) 4 k=l, 2, . . ., d (5.
and

nj(t) is the additive noise.

Two overlapping subarrays Y; and Y; are then formed where

Nelviva o - ym1) 1T (5.

Xz-[y2y3...ym]T‘ (S.

In chapter 3, it was shown that

BlYYyH1-ABsBiAE « o? 1(f q) (S.

E[Y Yo" )-apBs 8800 o o2 1) 0 o (5.

vhere I(m-l) is the (m-1)x(m-1) {dentity matrix and Iz(m_l)is the

(m~1)x(m-1) matrix showvn below

0000 .00 ]
1000 .00
0100 .00
Hm-1) = | -
0000 . 00
L0000 . 10 |

Let
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X

= E[Y;1,1)

1]

- B{Y1YpM)
MeA,BSBHA,H
E=o? I(m.1)
N-AzBS’HBHAZH
F-O’Z Il(m-l )*
Thus, assuming no compensation for the noise,
MaMN+ON«MsE
NeNao+oNoN-+F.
As before, we knov that ||E|| and ||F|| are equal to the square root of the

largest eigenvalue of EHE and F“F, respectively. It follows that

||E[|= o2 (5.2.2.2-7)
and
[IF||= o2. (5.2.2.2-8)
Thus,
ed [IENZ+ |IFI2 {2 2. (5.2.2.2-9)

For € ¢« 0, the bound on the chordal metric becomes

- 2
XN AD)S  of (5.2.2.2-10)
1 CCgux2egyfNxg) )

5.2.2.3 Linear Array: Non-Overlapping Doublets Case

In this case tvo non-overlapping subarrays Y1 and Y, are generated
from the data received at the sensor arrar. Assuming m to be even, Y, and
Y, are given by

Nelyyyy. .y I7 (5.2.2.3-1)




xz-[yzyA"'le]T'

As shown in chapter 3
E[Y;Y;9]=a3BsBHALE + &2 I(m/2)
E[Y;Y,H]=A;Bs#tiBHAH |

Let

e 31

- E(Y 1,1

4]

= B[¥1Y5"]
M=A4BSBHA,H
B=a? I
N=AyBsBH efa,H
F=0.
Thus
MaMa+oMaMsE

N-N+AN-N+P.

(5.2.2.3-2)

(5.2.2.3-3)
(5.2.2.3.4)

||E|| and ||F|| are evaluated as before. Since E=g?I, and F=0, E¥Bac*I(p/2)

and FHF=0. The largest eigenvalue of these matrices are 0% and 0. There-

fore,

|E||= o
and

1F|]= o.
Thus,

¢ ot |IE||12+ [IF||2 = o .
In this case, the bound on the chordal metric becomes

o2

X(Xi.ii)s

J((11“"§i)2*(!1“"!1)2)

1413

(5.2.2.3-5)

(5.2.2.3-6)

(5.2.2.3-7)

.2.2.3-8)




5.2.3 COMPUTER SIMULATION
A computer simulation was carried out to demonstrate the ap-
plicability of the upper bounds derived for the chordal metric. It should
be pointed out that few adjustments had to be made in order to exactly use
the derived bounds. The bounds involve the matrices M and N and their cor-
responding eigenvalues and eigenvectors, the latter being of dimension
((m-L)x1). However, from previous sections, we have seen that the
dimensionas of M and N are reduced to the order needed (d, the number of
sources) so that only the signal eigenvalues are estimated. The IMSL
routine EIGZC called to do this will return eigenvectors of dimension dxl1.
There exists methods to obtain the desired eigenvectors from the returned
set. Ve opt for the following. Recall that the original problem involved
solving the equation
Mx = X Nx. (5.2.3-1)
The singular value decomposition (SVD) of the matrix N results in
NaUp S, Vo H.

Let N* be the pseudo inverse of N. N* satisfies the Moore Penrose equa-
tions. It is clear that N* is given by

N*aV, (S,)°1 U8,
vhere (Sn)'1 consists on the inverse of the non zeros singular values. Pre-
multiplying both sides of equation (5.2.3-1) by N* results in

N*M x = X\ N*N x. (5.2.3-2)
Noting that N*N is the identity matrix provided that x is in the range of
N, solution of equation (5.2.3-1) is equivalent to solving the equation

N*™M x « X x. (5.2.3-3)

The eigenvalues and eigenvectors obtained in this fashion would be of
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dimension (m-L)x1 .

The scenario used for the simulation consisted of a linear array
of 8 sensors uniformly spaced at a distance A. 2 incoherent sources are
present and are located at angles 61=16° and 5. :4°. The incoherent case
wvas chosen so as to give a fair comparison to ESPRIT. The additive noise
vas generated as vhite Gaussian with zero mean and unit variance. The
perturbed angles of arrival of the sources are obtained using the upper
bound, the chordal metric and the perturbed eigenvalue. Tables 5.1 to 5.6
shov the sample mean of the angle estimates obtained from 50 runs wvhere 100
snapshots vere considered in each run. Note from these tables that the
bounds derived in this section perform quite well compared to the exact
value of the chordal metric. In some instances, the bound is even smaller.

This due to the bias that exists in the magnitude of the eigenvalue.
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Moving Window

Ang1e326°

SNR | © obtained | 6 obtained from | 6 obtained
(dB) from Bound | chordal metric from XA

10 | 24.26962 | 24.56922 | 24.13065

9 | 24.45502 | 24.65348 | 24.14139

8 | 24.71086 | 24.73565 | 24.15029
Table 1

(Sample Mean)

Angle=16°

SNR | 6 obtained | 6 obtained from | © obtained
(dB) from Bound | chordal metric from X\

10 | 16.56222 | 16.48074 | 16.00914

9 | 16.99071 | 16.54831 | 16.01596

8 | 17.41588 | 16.61207 |  16.02609
TabLe 2

(Sample Mean)
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ESPRIT: Linear Overlapping Case

Angle=24°
SNR | © obtained | © obtained from | 8 obtained
(dB) from Bound | chordal metric from A
10 | 24.26761 | 24.41945 | 24.13898
9 | 24.41869 | 24.47776 |  24.15929
8 | 24.68307 | 24.53942 | 24.18203
Table 3
(Sample Mean)
Angle-16°

SNR | © obtained | 6 obtained from | 8 obtained
(dB) from Bound | chordal metric from A

10 | 16.33276 | 16.36528 | 15.97328

9 | 16.52749 | 16.41086 | 15.97049

8 | 16.81625 | 16.45882 | 15.96841
TabLe 4

(Sample Mean)
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ESPRIT: Linear Non Overlapping Case
& ESPRIT: General Case

Angle=24°

SNR | © obtained | © obtained from | & obtained
(dB) from Bound chordal metric from X\

10 | 24.51770 | 5.58454 |  24.04759

9 | 24.82163 | 25.94506 | 24.03446

8 | 24.30935 |  26.38912 |  24.01111
Table 5

(Sample Mean)

Angle=16°
SNR | © obtained | © obtained from | © obtained
(dB) from Bound chordal metric from A
10 | 16.67917 | 17.54183 | 16.04165
9 | 17.07774 | 17.88994 |  16.11396
8 | 17.70301 | 18.31548 | 15.22606
TabLe 6

(Sample Mean)
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5.3 PERTURBATION DUE TO SENSOR SPACING

In this case ve assume the environement to be noise free. Hovever,
each sensor is assumed to be perturbed from its ideal position.
5.3.1 MOVING VINDOV

Consider a linear array of m identical sensors spaced a distance
D+4D; vhere AD; is the uncertainty in the spacing betveen the i-th and the
(i+1)-th sensors. Assume there are d (d<m) narrowband sources located at
azimuthal angles 6,; k=1,2,. . . d, vhich are impinging on the array as
plane vaves and vhose signal complex envelopes are denoted by sy(t). The
signal received at the i-th sensor is modeled as

- d -
¥i(t,8)= L sp(t)ag(6) ; i=1,2,...,m (5.3.1-1)
k=l

vhere """ denotes the response of the perturbed array and éi(ek) is the
perturbed relative response of the i-th sensor to the k-th source. Note
that
;i(e)_a(e)ej(u/c)((i—l)D+ADi)sin(e))
= a(0)el(i-1)D(w/c) sin(8) ¢j(w/c)AaDjsin(6) (5.3.1-2)
vhere a(0) is the gain of the sensor in the angular direction 6. To a first
order approximation
eJ(a/c)8Dysin(8) ¢ 1.5(w/c)aD;sin(8)
= 1+j(2nA8Dy/ 8)sin(9) (5.3.1-3)
vhere 8§ is the wavelength of the signal wavefront. Thus, Si(e) can be
vritten as
31(9) = a(0)ei(i-1)D(w/c) sin(6)
+ j(2raD;/§)ed (1-1)D(w/c) sin(O)sin(e)a(s). (5.3.1-4)

For simplicity, let ap=a(6y). Then
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d
71(t,8)= I apsp(t)(ed(i-1)D(w/e) sin(8y)
kal

d .
+3(2RAD;/8) I aysp(v)(ed/1-1)D(w/e)sin(Oy)sin(gy); ixl,...,m.  (5.3.1-5)
k=1

Notice that the first part of equation (5.3.1-5) is just the unperturbed
quantity y;. Dropping the argument (t,8) in equation (5.3.1-5), it can be
vritten as
Yi= Vi + Oy; = y; + €5 . (5.3.1-6)
(m-L+1) vectors in of length L are then formed vhere in is given by
in = { §n §n+1 s §n+L-1 }T'
in can be written as
Y, = Y, + Ep. (5.3.1-7)
From chapter 2 it is shown that Y, can be expressed in the form
Y, =AB#(N-1)g (5.3.1-8)
vhere A, B, & and S are
A=[a8...2]
ag =~ [ 1ed% . . . J(L-1)¢y
B = diag { a3 a3 . . . ay)
¢ - diag [ 3% &3%2 . . . &%}
=(wd/c)sin(8) , ko1, 2, . . ., d (5.3.1-9)
S={(s1 s3 .. .89 1T,
Similarly B, can be expressed as
By = § (2n/8) [aD], ABG#(P-D)s, (5.3.1-10)
vhere A, B, & and S are given by equation (5.3.1-9) and G and [AD}], are
G = diag { sin(8y) sin(8y) . . . sin(8y)}
(&D], = diag 8D, &D(p,yy - - - &D(p,p-1) }-

The tvo matrices M; and N; are then formed in the usual vay vhere
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Mp=[T %p... 0]

Mp=lTf3. .. ¥l

Consider the matrices E[M;HM;] and E[Nlanll. An element my p of E[MyHMq) is

m, b = E[T". Th)

vhere H denotes conjugate transpose and E[.] denotes expectation. Utilizing

equation (3.3.1-7), My h becomes

me,n = B[N . Y, )+E(0 B By ) +ELE . ¥, 1+ELE B By )

E[!kH°Zh] can be obtained in closed form as

d d
Elpd.nl-z2 ¢ Spq@pqaFpq
q=1 p=1
vhere

*
Spq=Blsgspl

*
3pq=2q3p

L
= ej(i-l)(‘p“ ’q) .
i=l

Fpq

e-3(k-1)4q oi(h-1)4p

Similarly, E[Zkﬂgh)] can be expressed as

d d

E[YF.Epl=j(20/8) £ L { SpqapgFhqe?

q-l p-l
x eJ(h-1)¢, sin(8p)}
vhere

b h+L-1
F
P i=h

In a similar manner, E[gkﬂzh)] is

= L wi ej(i’h)(‘p‘ ‘q) .
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(5.3.1-11)

(5.3.1-22)

(5.3.1-13)

(5.3.1-14)

(5.3.1-15)

(5.3.1-16)

(5.3.1-17)




d d .
EIEH.Tp)=3(20/8) T I { SpqapgFiqe™d (k-1)%
q-l p.l
x el(h-1)4 sin(e,)) (5.3.1-18)
vhere
k+L-1
F%q = I ADi ej(i-k)(‘p" ‘q) . (5.3.1—19)
§=k

Finally, folloving the same approach, Elgkﬂgﬁ)] can be written as

d d :
B(E B.Bpl=j(2/8)2 L z{quapqug e-i(k-1)4q
q-l p-l
x eJ(h-1)4 sin(8,)sin(8y)) (5.3.1-20)

vhere

L-1 ,

ygg - ;0 D, 8D, eI (T-K)(#p- ¢q) (5.3.1-21)
=

Note that the matrices E[Hlanll and E[Nlnﬂll can be vritten as
E{M;My) =M+ B
and
E[N;BM;] = N + F,
vhere the kh-th element of M and N are given by B[Zkﬁ.zh] and 5i!k+18-2h]v
respectively. The kh-th element of E and F are given by
E(TE. By 1+ BBy T Y 1+E(E . En] and B(%y 1P Enl+ElEk 1P Yy 1 EEy " En],
respectively. Recall that ||E|| and ||F|| are given by the largest eigen-
values of EHE and FHF, respectively. Note that this eigenvalue is alvays
less than or equal to the sum of all the eigenvalues. It is known that the

the sum of all eigenvalues of a matrix is equal to the trace of this

matrix. Recall that the matrix E is (m-1)x(m-1). Let ek, h be the kh-th ele-
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ment of E. It can be showvn that

(m-L) (m-L)
tr(BBE) = I Lolesnyl? .
k=l hal

Note that the square root of tr(D) is just the definition of the Frobenius

norm of E defined as

(m-L) (m-L)
lEllg = { I L ey, } - (5.3.1-24)
kel  h=l

The hkt! element of E is of the the form

d d . )
eh,k=j(2n/8) L z{quapqe-J(k-l)oq e (h-1)¢p)
P'l q:l

x(ngsin(ep)+r§qsin(oq)+(j2n/s)pg§ sin(6,) sin(8p)} (5.3.1-25)

Recall that if a=bc, then |a|¢|b]+|ec!|. Thus,

d d
|eh,k|$(2n/a)zl illqulIapqlf|§3|+|B§|+(ZH/S)IFB§|1 (5.3.1-26)
p=1 g=

It is easy to see that

L | &Dgax | ; h#l
rgqs (5.3.3-27)
(L-1)| &Dpay | 5 hel

vhere 4D; is assumed to be zero. Similarly, ve can show that

L | &Dpay | 5 k2l
FKq< _ (5.3.1-28)
(L-1) | Opax | i k=1

and
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L | &pay |2 ; h#l and kel

FBE < (L-1) | &Dpay 12 5 h=l or kel

(L-2) | 8Dpay |2 5 h=l and ksl.

(5.3.1-29)

Because (|ADmax|/8)2 is very small, Fgg is negligible. Let R be the

quantity

d d

R=(2m/8) L L [Spqllapgl -
psl q-l
Ve can then shov that

2L |&Dp,, |2 ; h#l and k#l
e <R { (2L-1) |ACpay]? ; h=l or k=l
k,h max

2(L-1) |ADpay |2 5 h=l and kal.

Using equation (5.3.1-24), it can be shown that

HE||? < RZ |aDpay1? [4(L-1)2+2(m-L-1)(2L~1)24(m-L-1)24L2].

Sfimilarly, it can be shown that
[1F))2 < R? |aDpay ]2 [(m-L)(2L-1)24(m-L)(m-L+1)24L2].

Therefore,

S RCTIERNTIE
SR [&Dpay| ([4(L-1)242(m-L-1)(2L-1)2+(m-L-1)24L2]

+[(m-L)(2L-1)2+(m-L) (m-L+1)24L2]}*

After some simplifications, it can be shown that

€ SR |&Dpa,] [8L2(m-L)24(m-L)(3-12L)+2)%.

(5.3.1-30)

(5.3.1-31)

(5.3.1-32)

(5.3.1-33)

(5.3.1-34)

Let Kl= [8L2(m-L)2+(m-L)(3-12L)+2]%. The bound on the chordal metric then

becomes
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d d
2R( |ADpax |/8K1 £ L
p-l q-

1|5pq||apq|
X\ A € . (5.3.1-3%)

JAkX1“"§1)2 + (yqfNxg)?

Note that the chordal metric is proportional to the correlation between the
sources. |
5.3.2 ESPRIT
5.3.2.1 General Case

Consider a planar array which consists of m matched sensor
doublets vhose elements are translationally separated by a displacement
D+4D; ( 4Dy is the uncertainty at one of the sensors of the i-th douhlet).

The signals received at the i-th doublet are

- d
X{(t,8)= I sj(t)ag(8)
k=1
(5.3.2.1-1)
. d
yi(t,g)_ T s..(t)ai(ek) ej(@/c)((i-l)0+wi\sin(e))‘
kw1
To a fiist order approximation
el (w/c)AD{sin(8) o 1,§(w/c)aD sin(8)
e« 1.J(2naD;/8)sin(8), (5.3.2.1-
vhere § is the vavelength of the signal vavefront. Then
Qj((»/c)((i-l)D«Al)i)sin(6))_ej(i—l)D(m/c) sin(@)
(50201

N j(2nADi/6)ej(i‘1‘D(”’°) Sin(®gin(ara(e).

It follovs that




§i(tv9)' % .i(ek),k(t)(ej(i-l)D(m/c) sin(6y)
« (5.3.2.1-4)
R j(2nADi/8)kglai(9k)sk(t)(ej(i‘l)n(“/c)Si“(ek) sin(8) i i=1,2,. . .,m.
Equation (5.3.2.1-1) can be written as
X{= X4 (5.3.2.1-5)
;i- Vi + Qyj = yq + e . (5.3.2.1-6)
Let g and i be the vectors
Ra (Xy%g . - . %g )T,
i-{§1§'2-~«§m}T-
It is easy to see that g and i can be revritten as
X«X (5.3.2.1-7)
Y=Y+ ar (5.3.2.1-8)

Previously, it was shown that X and Y have the folloving decompositions

X=A;S (5.3.2.1-9)
Y=Ap9S. (5.3.2.1-10)
Then
d
F1(t,8)= T ay(8)8,(t)(ed (1-1ID(w/c) sin(8y)
«! (5.3.2.1-4)
R j(2nADi/8)k:1ai(Gk)sk(t)(ej(1’1)0(“/°)5i“(9k) sin(§) : 1=1,2.. . ..m.
Equation (5.3.2.1-1) can be wvritten as
X{= X{ (5.3.2.1-5)
}i- Vi ¢ dyq{ = vy + €4 . (5.3.2.1-0)

Let g and i be the vectors
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- ( ;1 ;2 « e e ;n )T,

"(5'13;2"‘3%}1.'

legq? 242

It is easy to see that g and i can be rewvritten as

(5.3.2.1-7)

i) |5¢2
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=Y + &Y (5.3.2.1-8)
Previously, it was shown that X and Y have the following decompositions
X=4,S (5.3.2.1-9)
Y=4,45 (5.3.2.1-10)
vhere A, ¢ and S are
A = [a(8y) a(8g) . . . a(8y)]
a(8y) = [ a1(85) ax(8y) . . . ap(8;)]
¢ -diag [ el® &J®2 . . . &J¥% |
S={s;s9...841T.
Similarly AY can be expressed as
oY = § (2n/8) [AD]A,GSS, (5.3.2.1-11)
vhere A, ¢ and S have been defined earlier and G and [AD] are
G = disg { sin(©y) sin(€y) . . . sin(8y)}
[aD] = diag { 4Dy 4Dy . . . ADy }.
Let M and N be the matrices
N«E(X XB ]<E[X X]=M (5.3.2.1-12)
MeE[X Y8 J-E[X(YH+aYE)]-E[X YH]+E[X AYF)aNeaN. (5.3.2.1-13)
The error matrices E and F are given by
E=Q (5.3.2.1-14)
FxON=E[X oYH]a-j(2n/8)a seticHAH[aD]H. (5.3.2.1-1%)

Recall that

ra

¢ ot [IE]12 + JIF|12 - |IFI] (5.3.2.1-16)
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It is possible to show that the hk-th element of the matrix F is

£h, k=-3(21/ 8) DT}, (5.3.2.1-17)
vhere
d d
Th,k = L L ap(8,)a,*(8)Spq sin(8y) e g (5.3.2.1-18)
p-l q-l
and
*
Therefore,

d d
[£n, x| S (2R/8) |ODpax| T :1|ah(ep)||ak*(eq)||qu|. (5.3.2.1-19)
p=1 Q=

For omni-directional sensors, a(8)=1, ve get

d d
lfh,kl < 2w/ 8) Iwmaxl I I lqul- (5.3.2.1-20)
p=1 Q=1

The Frobenius norm of F is given by

m m 9 Y
HIF|] = hx N N L (5.3.2.1-21)
Thus,
m m d d %
[IF]] € (2n/8) |aDpgy | { I LI ISyl t (5.3.2.1-22
hal kel p-l q-l
vhich reduces to
d d , *
[[FI] € (2n/8) |oDpay| m { L I [Spql }. (5.3.2.1-21)
p=1 g=1
198
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The bound on the chordal metric then becomes

d d
2R( |8Dpay |[/8)R2 T L |Spql
- p=1 q=1
X(A{sAy) £ . (5.3.2.1-24)

{ (7ifMxg)? + (yyiNeg)?

vhere
K2«m.
5.3.2.2 Linear Array: Overlapping Doublets Case
In this section wve consider ESFRIT vhere a linear array composed
of m sensors is used to solve for the angles of arrival. As for the case of
the moving wvindov, wve assume that the i-th sensor is displaced by an amount
4D; with respect to the reference sensor vhich ve assume as the first

sensor. As seen in section 5.3.1, the received signal at the i-th sensor is

given by
- d
yi(t,8)= L apsy(t)(ed(1-1)D(w/c) sin(&)
kel
* (5.3.2.2-1)
d
j(2naD;/8) L aksk(t)(ej(i—l)D(u/c)sin(ek) sin(8) 5 i=1,2,. . .,m.
k=1

Two arrays il and 22 are then formed from this data vhere

hh=ty1yz. . vp1 )t
iz = { 52 §3 R §m )T,
Recalling that §i can be expressed as
§i = yi{ + € ; iel, 2, . . ..m,
vhere y; is the unperturbed data and e; is the error in y;. Therefore il

and 22 are given by
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Y, = Yy + Ep. (5.3.2.2-2)

¥y = ¥y + E. (5.3.2.2-3)
Y; and Y, have the following decompositions

Y,=A9BS (5.3.2.2-4)

Yo=A,BeS (5.3.2.2-5)

vhere A, B, & and S are

Ay = (a3 83 - . . 34 ]
ay = [ 1 3% . .. eI(m-2)4y
B = diag { a3 a3 . . . ag}

¢ = diag [ eI &J®2 . . . ei% )
and
#=(00/c)sin(8y) , k«1, 2, . . ., d. (5.3.2.2-6)
Similarly Ey and E9 can be expressed as
E; = § (2n/8) [4D]q A9BGS, (5.3.2.2-7)
Eo = j (2n/8) [AD]y A,BGHS, (5.3.2.2-8)

vhere A, B, & and S have been defined earlier and G, [AD]; and [A&D]jare

G = diag { sin(®y) sin(8y) . . . sin(8y)},
[AD]I - diag { ADl ADZ « . e ADm_l )},
[8D]y) = diag { 4D, 4Dy . . . ADj }.

Tvo matrices N and N are then formed vhere
M=E(T; T%)1-B[(Y; + BT + EDPBI,
NE(T; TH;1-E[(T; + E1)(Y) + Ep)F).
These can be decomposed into
M=E{Y, YH,1+E(Y; EF{)+E[(Ey Y, ]+E[E; EB|]aM:E, (5.3.2.2-9)
N-E{Y; YH,)+E[Y; EBy)4B(E) YP,]+E[E; EH,)aN.F, (5.3.2.2-10)
vhere

M=E[Y; YH;],
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N=E[Y; EF)1+E(E; YH,1+E(E; EH;],

B=E[Y; YHy),

F=B(Y) E9,1+E(E; ¥H,]14E(E; EF,).
To obtain a bound on the chordal metric one needs to explicitly express ¢
in terms of the parameters of interest. One has thus to get the Euclidean
norms of E and F. It can be shown that

E(Y; EH,]=-j(2n/8)A,BsBBGHA, Al aD],8,

E(Ey Y8;1-E(E; Y18,

E(E; E¥y1=(2n/8)2 [aD],A,GBSBHGHA,B[ D], B,

E[Y; EB))=-j(2n/8)a,BsBHGHeA,H D), B,

E[E; Y8,)=j(2n/8)[aD]1A,GBSBHeA,H,

E[E; EBy)=(2n/8)2 [aD];A,GBSBEGH®A,B[aD],B.
Consider the matrix E[Y, §31]. The hk-th element of this matrix can be ex-
pressed as

-3 (2n/8) 8Dy, Thi,

vhere

d d .
Thk = tl tlapq Spq Sin(8y) eJ(h-1)¢p o-j(k-1)4q,
p=1 Q=

and a,, and Spq have been defined earlier. Since the matrix E[E; XHI] vas

shown to be E[E, Zﬂllﬂ, the hk-th element of this matrix can be vritten as
1(2r/ 8) 8Dy, Tyt

Because the matrix E[E, §H1] is given by (2!1/8)2 [AD]IAGBSBHGHA“[AD]IH. a

term of the form (AD/8)2 vill be contained in all the elements of this

matrix causing the matrix to be negligible. Therefore, the hk-th element of

the matrix E is given by

enk = -3(2M/8)AD Ty » J(2/8)AD) Typ*. (5.3.2.2-11)
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eni = J(2n/8)8Dy (-Tpy + Tpp™)- (5.3.2.2-12)
Therefore,
d d
lenk | < 2(2n/8) | 8Dpqy| 2 Ellapql [Spq| (5.3.2.2-13)
p- qx

The Frobenius norm of E is given by

m om *
[IEJ] =4 £ T |epel? t (5.3.2.2-14)
Thus i
4 d
B[] € (20/8) |MDpayll2(m-2)(m-2)1% T £ |apqllSpql -  (5.3.2.2-15)
p=1 q=1
The second step is to compute ||F||. For this recall that
FeE(Y; B 1+E(E; T9,]+E[E; By,
vhere

E(Y; EFy]=-j(2n/8)A,BsBAGH®A, [ aD], 8,

E(E; Y8,]1=j(2n/8)[aD]yA,GBSBE®A,H,

E(E; EFy]1=(2n/8)2 [aD]1A,GBSBHGH®A,H[aD], 8.
Because E[E, §82] will have a factor of (AD/&)2 vhich tends tc zero, this
term becomes negligible and is omitted in the computation of the matrix F.

An element hk-th of the matrix E[Y; §H2] is of the form

d d _ .
-JQQU &M, I I ayg Spq sin(8y) el(h-1)ép o-kég,
p=1 gq=1

The hk-th element of the matrix E[E; XHZ] is of the form
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d d
2wy, & I apq Spq sin(8p) ej(h‘l)‘p e-Jkéq,
p-1 q-l

The hk-th element of the matrix F, f), is given by

d d , )
fhi=3 (27 8) ADy, pfl qflapqqu eJ(h-l)*pe‘Jk¢q(sin(ep)+sin(eq)). (5.3.2.2-16)
Therefore,
d d
lEni| € (20/8) [80payl £ T Japgl ISpgls (5.3.2.2-17)
p=1 q=1
and
) , & 9
IF| < 2r(|8Dpay |/8)[(m-1)%+(m-1)(m-2)]* L I |apq] [Spql- (5.3.2.2-18)
p=1 g=1
Recall
e =4 [IE]12 + |IF]]2
d d
€QR( | Dpay |78 [(m-1)2+(m-1)(m-2)+2(m-2)(m-1)]® £ I apg]| [Spql-
p=1 q=1
d d
€ < 2n( &gy |78 [(m-1)(4m-T)1® £ I lapg | ISpql- (5.3.2.2-19)

p-l q:l

Let K3 = [(l-l)(bm-?)]*. The bound on the chordal metric then becomes

d d
2n( |&Dpay [/8)K3 T I lqullapql
p=1 q=1

X(A\,Aq) < : (5.3.2.2-20)

U (rsPux? o (yyfg)?
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5.3.2.3 Linear Array: Non-Overlapping Doublets Case
In this section ve assume that tvo adjacent sensors form a pair so

that tvo non-ovelapping arrays il and iz are formed vhere

Y =0(y193- .- yp1 )T

By = (529 . . a0l

m is assumed to be a multiple of 2. Recalling that §i can be expressed>as
§i =y + e ;5 i=1, 2, . . .,m,

vhere y; is the unperturbed data and e; is the error in v;. Therefore, Yy

and 22 can be expressed as

I =X « K.

-~

¥ = X7 + E3.

Y; and Yy have the following decomposition
Y1=A3BS (5.3.2.3-1)
Yo=A3B#S (5.3.2.3-2)
vhere Ay, B, # and S are
Ay = (a3 37 . - . a9 ]
ag = [ 1 e3¢ | | | QJ(m-2)¢4
B = diag { a; a3 . . . ag)
® =« diag [ eJ®1 eI®%2 . . . eI% )
and
=(wd/c)sin(6y,) , k=1, 2, . . ., d.
Similarly By and E; can be vritten as
E; = § (2n/8) [4D]; A3BGS, (5.3.2.3-3)
Ey = j (2n/8) [4D]; A3BGES, (5.3.2.3-4)

vhere Ay, B, & and S have been defined earlier and G, (aD], and [AD],are

G = diag { sin(®y) sin(8y) . . . sin(8y)],
[ADII - dlag { ADl AD3 e e s ADM-I 1,
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[AD], = diag { 4D, AD4 . . . &Dp ).

Tvo matrices N and N are then formed vhere

MeBYy Y8 1-E[(Y) « E(T + EDFY,

N=E[Y) TH;1-E[(¥; + E1)(¥2 + EpF).
These can be decomposed into

M=E[Y; YH,]+E[(Y; EH,]+E[E; YH,]+E[E; EB;]=M:E, (5.3.2.3-5)

N=E[Y, YB,)+E[Y; EB,]+E[E; YH;]4E[Eq EHp]aNeF, (5.3.2.3-6)
vhere

M=E[Y; Y],

N=E{Y; EF;)-E(E; YA;)+ELE; B9,

E<E[Y; Y],

F=E[Y; Ef714E(E; Y9, )+E(E) EF)).
It can be showvn that

E[Y; EH;}--j(2n/8)a;BsBAGHA B[ aD], 8,

E[E; Y9 )=E[E; Y9]8,

E(E; EF;]1=(2n/8)2 [4aD]A3GBsBBGEA B[ aD],H,

E[Y; EF)]1=-j(2n/8)AqBsBHGHA B aD), B,

E(E; YH,)=j(2n/8)[aD];A3GBSBH A4,

E(E, EPF;1=(2n/8)2 [aD]1A;6BSBEGHSA,H[ aD},E.
Consider the matrix E[Y; §51]. The hk-th element of this matrix can be ex-
pressed as

-3(2n/ 8)8Dop_1 Thi
vhere
d d

Thk - L L a

sin(8y) eJ(2h-2) 8y o-3(2-D)bg; K k=1.2.....(m/D)
p=1 q=1

pq Spq

and apq and Spq have been defined earlier. Since the matrix E[E; XH11 vas
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shovn to be E[E; Xﬂlla, the hk-th element of this matrix can be vritten as
j(ZR/S)ADZh_l Thk*'
Because there vill be a term (80/8)2 in the matrix E[E, §31] vhich tends to

zero, the hk-th element of the matrix E is approximated by

epk = -3(2W8)AD), Tpy + J(2R/8) 8y Typ™s (5.3.2.3-7)
enk = J(2W8) 8Dy (-Tyy + Tyn™)- (5.3.2.3-8)
Therefore,
d d
lenk | < 2(2n/8) |Anm3x|pf1 qf1|ap°| |Spq - (5.3.2.3-9)

The Frobenius norm of F is given by

m/2 m/2 ¥
[EIl =¢ £ T Jepel? . (5.3.2.3-10)
=] k=
Thus
d d _
HIEL] € (2w8) |8Dpay |12(m/2-1)(m/2)]* pfl q:1|apq|.qu|. (5.3.2.3-11)

The second step is to compute ||F||. Recall that

F=E[Y; E%;)+E[E) YH,1+E(E; EF,).
The element E(E, §H2] will be neglected because it will have a factor of
(8D/8)2 which tends to zero. The hk-th element of the matrix E[Y; EF.) is

of the form

d d . .
-J(2m/8)8Dpy I I apg Spq sin(8y) eJ(2h-2) ¢, o-3(Zk-1)éq
p=1 g=l

The hk-th element of the matrix E[E; 232] is of the form
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d d _ _
J(2w/8)&Dg) 1 I I apg Spq sin(ep) eJ(2h-1) 4y o-3(2k-2)4q,

Therefore,
d d
lfhk| € (20/8) [8Dpay| I I lapq| ISpqls (5.3.2.3-12)
p=1 gq=1
and
d d
|F] < 2R(|&Dpay |/8)[(0/2)24(m/2-1)(0/2)]% £ L lapql ISpql- (5.3.2.3-13)
p-l q-l
Recall
e =t |[E])2 + |IF]|2
d d
sgzn(lanmax|/8\[(m/2)2+(m/2-1)(m12)+2(m/2)(m/2-1)]* pxl qzllapql |Spq -
d d
€ < 2R(|Bpay /&) [(m/2)(2m-3)]% T £ [apq| [Spql- (5.3.2.3-14)

p=1 q:l

Let K4 = [(m/2)(2m-3)]*. The bound on the chordal metric then becomes

d d
2R( |ADpay /8RS L I [Syq|lapg]
- p=1 g=Il
X(r2) € . (5.3.2.3-1%)

| (y1™Mx;)? « (y3BNxg)?2

5.3.3 COMPUTER SIMULATION
In this section, ve studied the effects of errors due to sensor

spacing on the performance of the 3 algorithms discussed earlier. The model
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used consisted of two incoherent (d=2) incident on a linear array consist-
ing of eight sensors (m=8). The sources are assumed to be located at 6¢=16°
and 92-24°. For simplicity, the case of omnidirectional sensors was assumed
for all three cases. In the simulation the case of perfect sensor spacing
vas first considered. 100 srapshots vere used to obtain the matrices M and
N. The process vas repeated 50 times and the results averaged to obtain
nominal values for Xi, x; and yy ;i=1,2. A random perturbation with a maxi-
mum AD varying from D/100 to D/1000 wvas then introduced and the procedure
used in the unperturbed case vas repeated. D vas assumed to be equal to
half the wvavelength so that wé/c=n (8 being the wavelength). The computed
results arc shovn in tables 5.7 to 5.14. If the error is smali enough, then
the bounds derived in this section give acceptable results. Bowvever, if the
error large, then the conditions for which these bounds have beer derived

do not hold any more and therefore the bounds are not applicable.
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Moving Window

Angle=24°
aD 8 obtained | @ obtained from | 8 obtained
from Bound | chordal metric from \
D/100 | 26.47194 | 24.00648 | 24.00001
D/300 | 24.81639 | 24.00216 | 24.00001
D/SO0 | 24.48902 | 24.00130 | 24.00000
D700 | 24.34906 | 24.00093 | 24.00000
D-1000 | 24.24422 | 24.00064 | 24.00000
Table 5.7

(Sample Mean)

Angle=16¢°
AD @ obtained @ obtained from e obtained
from Bound chordal metric from \
D/100 | 20.68584 | 16.0085%4 I 16.0007Q
D30 | 17.53180 | 16.00184 | 16.00024
D-SO0 | 16.91655 | 16.00110 | 16.00014
D700 | le.65397 | 16.00079 [ 1e.00010
D 1000 | 16.45743 | 16.00088 | le.o00e”

Table 5.8
(Sample Mean)
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ESPRIT: Linear Overlapping Case

Angle=24°
AD @ obtained | © obtained from | & obtgined
from Bound | chordal metric from X\
D/100 | 25.67951 | 24.00629 | 24.00038
D/300 | 24.55655 | 24.00210 | 24.00015
D/S00 | 24.33357 | 24.00126 | 24.00009
D/700 | 24.23815 | 24.00090 | 24.00006
D/1000 | 24.16665 | 24.00063 | 24.00005
Table 5.9

(Sample Mean)

Angle=16°
aAD 8 obtained | 6 odtained from | @ obgé;ned
from Bound chordal metric from X\
D100 | 18.17524 | 16.00500 | 16.00077
D/300 | 16.72113 | 16.00167 [ 16.00021
D/SO0 | 16.43227 | 16.00100 | 16.00013
D/700 | 16.30865 | 16.00071 I 1600009
D/1000 | 16.21599 | 16.00080 I 16.00006
TabLe 5.1Q

(Sample Mean)




ESPRIT: Linear Non Overlapping Case

Angle=24°
aAD 8 obtained | @ obtained from | 6 obtained
from Bound | chordal metric from X\
D/100 | 25.76599 | 24.01485 | 24.00153
D/300 | 24.58539 | 24.00493 | 24.00053
D/S00 | 24.3508¢ | 24.00296 | 24.00032
D/700 | 24.25051 | 24.00212 | 24.00023
D/1000 | 24.17530 | 24.00148 | 24.00016
Table 5.11

(Sample Mean)

Angle=16°
AD 8 obtained | @ obtained from | & obtgined
from Bound chordal metric from X\
D/100 | 18.25734 | 16.01279 | 16.00038
D/300 | 16.74875 | 16.00426 |  16.00012
D/S00 | 16.44886 | 16.00255 | 16.00007
D/700 | 16.32050 | 16.00183 [ 16.00005
D/1000 | 16.22420 | 16.00128 | 16.000013
Table S5.12

{(Sample Mean)




ESTRIT: General Case

Angle=24°
AD 8 obtained | 8 obtained from | 6 obtained
from Bound | chordal metric from X\
D/100 | 25.5780% |  24.01101 | 23.99986
D/300 | 24.52344 | 24.00366 | 23.99995
D/S00 | 24.31377 | 24.00220 | 23.99997
'D/700 | 24.22404 |  24.00157 | 23.99998
D/1000 | 24.15678 | 24.00110 |  23.99998
Table 5.13

(Sample Mean)

Angle=16°
aD 8 obtained | 6 obtained from | & obtained
from Bound | chordal metric from )\
D/100 | 18.01733 | 16.01102 | 15.99943
D/300 | 16.66954 | 16.00368 |  15.99981
D/S00 | 16.40142 | 16.00221 | 15.99989
D/700 | 16.28663 | 16.00158»7; |  15.99992
D/1000 | 16.20060 | 16.00111 |  15.90994
Table 5.14

(Sample Mean)




CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 CONCLUSION

In this chapter ve discuss the contributions of this work
vhich dealt exclusively with the non search procedure known as the Matrix
Pencil Approach. ESPRIT and the Moving Vindow are but two of the operators
that can be used in the formulation of this approach vhich is based on the
generalized eigenvalue decomposition of two matrices generated from the
received data. Special attention is given to the Moving Window since it wvas
shown to apply even in the case of fully correlate? signals. Hovever, the
method as applied in [1] did not perform as vas expected especially in
cases of lov signal to noise ratio. Ve have shown that the separation of
the signal and noise subspaces is possible with the use of a windov of
length L vith d<L.{(m-d) vhere m is the number of sensors and d is the num-
ber of sources. This, in turn, allowved us to consider only those eigen-
values vhich are related to the signal subspace by using a singular value
decomposition (SVD). In [1] a vindovw of length L=m-d vas recommended. Ve
have explained why this choice is actually the worst one since it results
in matrices of dimension (dxd) vhich do not permit recognition of the twvo
subspaces.

Most of the proposed high resolution techniques in digection find-
ing treat each sensor in the array as if it exists by itself. In practice
hovever, mutual coupling exists and is very strong if the separation be-
tveen the sensor is small. This can significantly alter the structure of
the matrices involved in the formulation of the proposed algorithms wvhich,

in turn, drastically degrades their performance. In chapter 3} ve have pro-




posed a model vhich takes into account the effects of mutual coupling be-
tveen the sensor elements of the array. Under these conditions, we have
studied the performance of the Matrix Pencil Approach and we have shown
that the decompositions needed in this formulation are not possible. Ve
proposed twvo methods to solve this problem. The first method consists of
obtaining an estimate of the incident signai vector. A minimum mean-squared
error estimation wvas then performed and an estimate was found. It was
shovn, through computer simulations, that the angles of arrival of the
sources are vell estimated using this estimate. In the second method, some
pre-processing vas needed in order to generate the desired incident signal
vectors. This was referred to as the Direct Method. Several schemes have
been proposed depending on the nature of the algorithm used. All schemes
have been shown to be successful in estimating the angular locations of the
sources.

The previous analysis dealt with narrowband signals. The modeling
used there is not appropriate vhen dealing with wideband sources. Chapter 4
deals vith signals of this nature. Ve have devised three techniques the
first of vhich is original in the sense that the Matrix Pencil Approach is
utilized vith a signal model not used previously in other approaches. The
signals are identified by their natural frequencies and their angles of ar-
rival. This modeling is appropriate vhen the source signals are non sta-
tionary. Three matrix pencils have been generated from the data. The rank
reducing values of the first matrix pencil allows us to generate estimates
of the natural frequencies. The rank reducing values of a second matrix
pencil are shown to be related to both the angles of arrival and the natu-
ral frequencies of the sources. At this stage, it is not apparent vhich

natural frequencies go vith vhich angles of arrival. The rank reducing




values of a third matrix pencil are used to eliminate any ambiguities that
could arise. The second method utilizes the same model used by Su and Morf.
Hovever, the array configuration used is similar to the first method. The
sources are assumed to be linear systems driven by wvhite noise sequences. A
scheme wvas devised in which the angles of arrival could be solved for with
the knovledge of the system poles. These poles are shown to be a mixture of
the source poles and the sensor poles. The analysis is carried out on the
unit circle by using a discrete Fourier transform on the data sequences.
The third method makes use of the CSS of Vang and Kaveh. This method wvas
used in conjunction with ESPRIT and the Moving Window. The methed is shown
to perform very well and the sample variances of the angle estimates are
showvn to closely follow the Cramer-Rao Lower Bound (CRLB).

Chapter 5 analyzes the effects of the ncise and perturbations due
to sensor spacing on the performance of ESPRIT and the Moving Window. A
measure, termed the chordal metric, was introduced. The chordal metric is
shovn to be a function of the true and perturbed angles of arrival. Geom-
etric upper bounds have been derived for the Moving Vindow and ESPRIT oper-
ators. The proposed bounds give insight into performance degradation vhen

ideal modeling is not met.

6.2 FUTURE VORK

The Matrix Pencil Approach is based on exact knowledge of the num-
ber of sources. Several methods have been proposed in the case of Gaussian
signals [40,41]. These methods are shown to be very effective with respect
to some set criteria. Special efforts should be devoted to nen Gaussian
cases. Also, the wvideband methods described in chapter 4 assume the number

of natural frequencies (first method) and the number of poles (second meth-




od) are knowvn. Significant distortion will arise if this number is un-
derestimated. More effort is needed for this particular case.

Ve have studied the effects of mutual coupling betveen the array
elements in the narrovband case vhere only a single carrier frequency is
assumed. In the case of videband sources, the mutual impedances become fre-
quency dependent. This significantly changes the nature of the signal
modeiing. The method that wve have used should be generalized to the case of
videband signals.

Notice also that the bounds derived for the chordal metric in
chapter 5 are not very tight. This is mainly due to the procedures used in
evaluating the Frobenius norms of the error matrices. There exist other
techniques to evaluate these norms. One can certainly tighten these bounds
in order to obtain more insight into performance degradation wvhen ideal
conditions are not met.

An interesting case arises when one mounts an array of sensors on
an airplane. The vibrations of the airplane will cause the sensors to be
displaced from their ideal positions. A tvo dimensional perturbation analy-
sis is needed to evaluate the chordal metric. Also, one is expected to
study the effects of the structure on the mutual impedances.

Finally B. Ouibrahim [1] proposed a third operator. called the
susmation operator, that can be used in the formulation of the matrix pen-
cil. The work that ve have developed here can be easily generalized using

this operator.




APPENDIX

COMPUTATION OF THR CRLB

Consider a linear uniformly spaced array consisting of m wideband
sensors and let there be d wideband sources (d<m) located in the far field
and emitting signals arriving at the array from direction 8;; i=1,2,...,d.
The observed data vector X at a frequency u; can be expressed as

X(w)) = A(w))S(wy) + N(wp) 5 11, 2, . . ., L (A.1)
vhere
A is the direction matrix

is the source vector

In

and
N is the additive roise vector.

Assume the noise components to be statistically independent zero
mean random variables with variance o?. Assume also that S is a zero mean
random vector. Let R be the covariance matrix of the observed data vector
X. Let © denote a parameter vector whose elements consist of the angles of
arrival and statistical parameters related to the signal and noise complex
envelopes. The joint probability density function of X given 8 is given by

£(X/8)= (2m)~(™2) (det(R)}™* exp{-(1/2)XBR-1x }. (A.2)
Therefore,
Log{£(X/8)}= -(m/2)Log(2m)-(1/2)Log(det(R)) -(1/DXER-1X. (A.3)
Taking into account all the frequency components and assuming statistical
independence from one band to the next, wve obtain
L '

Leg(£(X/8))= C -(1/2) I Log(det(R)) -(1 1) I xFr-ix. (A.)
1=1 1=1




vhere C is a constant. Let 6 be an uabiased estimator of 8. It is known
that

var(8) 2 J-1(e) (a.5)
vhere J is the Fisher information matrix whose ij-th entry is

(J(®1)i,y =E{ (3L°8(f(§/§))/3ei)(3L°8(f(§/§))/3ej))~ (A.6)
It has been showvn [89] that

[3(®14,5 = (1/2) Tr { (R°} aR/38;)(R"1 3R/28y)) (A.7)
vhere Tr(B) denotes the trace of the matrix B.

For the sake of clarity, assume that 2 correlated sources s1 and
sy impinge on the array from directions &, and 6;. respactively. Let p be
their correlation coefficient. Assuming that the noise components are inde-
pendent zero mean random variables with variance cnz‘ the covariance matrix
R can be vritten as

R=E[XxBj-asaf.dd (A.8)

wvhere I is the (mxm) identity matrix. The matrix S cen be expressed as

012 [+ 01 02
S =

o
&

P 01 62 62

vhere the variances of sy and s; are denoted by 612 and 622. respectively.
The signal to noise ratios SNR; and SNR, are defined as

SNRy = 10log{ oy2/c2},

SNRy = 10log{ oy2/62).
Therefore, 312 ard 322 are given by

017 = o2 10(SNRy/10)

2 - o.;.: 10(5“2/10)'

o2




The matrix S can be revritten as

o2 10(SNR1/10) ; 2 10(SNRy+SNRy)/20)

S =
P Ug 10((SN31+SNR2)/20) Uﬁ lo(SNRz/IO) .

The matrix A is of the form
1 1
el ¢l el ¢2
ed(m-1) g1 Qi(m-1) 4

vhere ¢; = (wbd/c)sin(8;). The parameter vector 8 is given by
o - [ 6, 8, 5, 0,2, SNR;, SNR, ].
Six derivatives have to be computed. They are
3R/30) = (3a/2ey)sAB . As(aaB/aey),
3R/36 = (3A/387)SAH . as(3aB/3e,),
3R/3p = A(3S/3p)AH, '
R/3(a2) = A(3S/3(0,2)aB « 1,
3R/ISNX; = A(3S/ISNR;)aH

3R/ISNR, = A(3S/3SNR,)AB

Note that
0 1
2¢/3; = o2 10(SNR1+SNRy)/20)
) 1 0],
10(SNR{)/10) o 10(SNR«SNR~)/20)
3s/3(ey?) -
0 10(5NR1*SNR2)/20) lo(SNRz)/lo)
((Ln(10)/10) 10(SNR1)/10)  5((Ln(10)/20)10(SNR1+SNR~) "
35/35NR1 - a
o((Ln(10)/20)10(SNRy{+SNR5)/20) 0
0 o((Ln(10) "20)10(SNRy{«SNR4).

[
3S/aSNR, = [ ; |
o((Ln(10),/20,10(SNR1«SNR2) 720, ((1n(10).10) 1C(SNRy)

-




r 0 0
(wd/c)cos(6y)el o1 0

(4/26) =
| (2-1) (wd/c)cos(8el(®-Dg1 0 |,
and
K 0 .

0 (wd/c)cos(8y)el ¢2

(34/36;) =

| 0 (n-1)(wa/c)cos(8y)ed (B-1)g2 |

Baving defined all the above quantities, it is easy to do the multiplica-

tions needed in equation (A.7) and determine the CRLB.
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